Lost in data: recognizing type of time series sensor data using signal pattern classification

Jelena Čulić Gambiroža1, Toni Mastelić1, Ivana Nižetić Kosović1, Mario Čagalj2
1Ericsson Nikola Tesla Research, Ericsson Nikola Tesla, Split, Croatia
2FESB, University of Split, Split, Croatia

Tóm tắt

AbstractWith the increase in number and size of Internet of Things systems, there is an ever-growing risk of (meta)data loss, as well as the maintenance overhead to mitigate such risks. The experts recognize three main challenges in this area that need to be tackled, namely (1) downsizing the manual work required for configuring sensor networks, (2) recovering metadata, such as sensor type, in case of connection issues, malfunctions or malicious actions in sensor networks, (3) rebuilding metadata lost due to unexpected problems within a data storage. Fortunately, all three challenges can be tackled with a uniform solution, namely the signal type classification approach, which is able to match raw signal to an appropriate data type. In this research, we evaluate and compare different approaches for signal type classification that can be used to recognize a signal type being read from an IoT sensor. This is done by using machine learning methods for modelling a signal represented as raw time series data. Three machine learning classification approaches are taken into a consideration, namely one class, two class and multi-class. According to the results of the evaluation, the most accurate multi-class random forest algorithm can correctly classify unknown signals in $$\sim {75}\%$$ 75 % of the cases based on only 20 consecutive sensor readings. Moreover, multi-class random forest can detect two most probable classes of monitored signal with the accuracy of 95%.

Từ khóa


Tài liệu tham khảo

Zaidi, A., Barnneby, A., Nazari, A., Hogan, M., Kuhlins, C.: Whitepaper on cellular IoT in the 5G era. Technical report, Ericsson (2020). https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-iot-in-the-5g-era

Ali Zaidi, M.H., Yasir Hussain, Kuhlins, C.: Whitepaper on cellular IoT evolution for industry digitalization. Technical report, Ericsson (2019). https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-iot-evolution-for-industry-digitalization

Internet of Things (IoT) Connected devices installed base worldwide From 2015 to 2025 (in Billions). Technical report. https://www.statista.com/statistics/471264/iotnumber-of-connected-devices-worldwide/

IDC: Worldwide Global DataSphere IoT Device and Data Forecast, 2020-2024. Technical report, IDC (2019). https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Reinsel, D., Gantz, J.R. J.: The digitization of the world from edge to core. Technical report, IDC (2018). https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Buonadonna, P., Gay, D., Hellerstein, J.M., Hong, W., Madden, S.: Task: sensor network in a box. In: Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005., pp. 133–144 (2005). https://doi.org/10.1109/EWSN.2005.1462005

Kuny, T.: The digital dark ages? Challenges in the preservation of electronic information. (1998)

Tonkin, E., Tourte, G., Gill, A.: In: Vermeeren , A., Calvi , L., Sabiescu, A. (eds.) Crowd mining applied to preservation of digital cultural heritage. Cult. Comput., vol. 1, pp. 115–136. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-58550-5

Johnston, L.: Challenges in preservation and archiving digital materials. Inf Serv Use 40, 193–199 (2020). https://doi.org/10.3233/ISU-200090.3

Perera, C., Jayaraman, P.P., Zaslavsky, A., Georgakopoulos, D., Christen, P.: Sensor discovery and configuration framework for the internet of things paradigm. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 94–99 (2014). https://doi.org/10.1109/WF-IoT.2014.6803127

Madsen, S.S., Santos, A.Q., Jørgensen, B.N.: A QR code based framework for auto-configuration of IoT sensor networks in buildings. Energy Inf 4(2), 46 (2021). https://doi.org/10.1186/s42162-021-00152-w

Perera, C., Jayaraman, P., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Dynamic configuration of sensors using mobile sensor hub in internet of things paradigm. In: 2013 IEEE eighth international conference on intelligent sensors, sensor networks and information processing, pp. 473–478 (2013). https://doi.org/10.1109/ISSNIP.2013.6529836

Gambiroza, J.C., Mastelic, T.: Big data challenges and trade-offs in energy efficient internet of things systems. In: 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6 (2018). https://doi.org/10.23919/SOFTCOM.2018.8555770

Ni, K., Nithya, R.A., Chehade, M., Balzano, L., Nair, S., Zahedi, S., Kohler, E., Pottie, G., Hansen, M., Srivastava, M.: Sensor network data fault types. TOSN (2009). https://doi.org/10.1145/1525856.1525863

Cai, H., Xu, B., Jiang, L., Vasilakos, A.V.: Iot-based big data storage systems in cloud computing: Perspectives and challenges. IEEE Internet Things J. 4(1), 75–87 (2017). https://doi.org/10.1109/JIOT.2016.2619369

Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018). https://doi.org/10.1109/JIOT.2017.2773600

Sawadogo, P.N., Darmont, J.: On data lake architectures and metadata management. J. Intell. Inf. Syst. 56, 1–24 (2021). https://doi.org/10.1007/s10844-020-00608-7

Ravat, F., Zhao, Y.: Metadata management for data lakes. In: Welzer, T., Eder, J., Podgorelec, V., Wrembel, R., Ivanović, M., Gamper, J., Morzy, M., Tzouramanis, T., Darmont, J., Kamišalić Latifić, A. (eds.) New Trends in Databases and Information Systems, pp. 37–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30278-8_5

Perera, P., Oza, P., Patel, V.: One-class classification: a survey (2021). https://doi.org/10.48550/arXiv.2101.03064

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014). https://doi.org/10.5555/2627435.2697065

Susto, G.A., Cenedese, A., Terzi, M.: Chapter 9 - time-series classification methods: Review and applications to power systems data. In: Arghandeh, R., Zhou, Y. (eds.) Big Data Application in Power Systems, pp. 179–220 (2018). https://doi.org/10.1016/B978-0-12-811968-6.00009-7

Geurts, P.: Pattern extraction for time series classification. In: PKDD (2001). https://doi.org/10.1007/3-540-44794-6_10

Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st International Conference on Very Large Data Bases. VLDB ’05, pp. 697–708 (2005). https://doi.org/10.5555/1083592.1083674

Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585 (2017). https://doi.org/10.1109/IJCNN.2017.7966039

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

Jastrzebska, A.: Time series classification through visual pattern recognition. J. King Saud Univ. Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.12.012

Lamrini, B., Gjini, A., Daudin, S., Armando, F., Pratmarty, P., Travé-Massuyès, L.: Anomaly detection using similarity-based one-class SVM for network traffic characterization. (2018). http://ceur-ws.org/Vol-2289/paper12.pdf

Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D.: Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 28(1), 162–169 (2017). https://doi.org/10.21629/JSEE.2017.01.18

Shahid, M.R., Blanc, G., Zhang, Z., Debar, H.: Iot devices recognition through network traffic analysis. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5187–5192 (2018). https://doi.org/10.1109/BigData.2018.8622243

Zaccone, G., Karim, M.: Deep learning with TensorFlow - Second Edn. (2018)

Bellinger, C., Sharma, S., Japkowicz, N.: One-class versus binary classification: Which and when? In: 2012 11th International Conference on Machine Learning and Applications, vol. 2, pp. 102–106 (2012). https://doi.org/10.1109/ICMLA.2012.212

Hempstalk, K., Frank, E.: Discriminating against new classes: One-class versus multi-class classification. In: Wobcke, W., Zhang, M. (eds.) AI 2008: Advances in Artificial Intelligence, pp. 325–336. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-89378-3_32

Feng, F., Li, K.-C., Shen, J., Zhou, Q., Xuhui, Y.: Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification. IEEE Access PP, 1–1 (2020). https://doi.org/10.1109/ACCESS.2020.2987364

Bhatia, S.C.: 2 - solar radiations. In: Bhatia, S.C. (ed.) Advanced Renewable Energy Systems, pp. 32–67 (2014). https://doi.org/10.1016/B978-1-78242-269-3.50002-4