Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta

Microbial Cell Factories - Tập 10 Số 1 - 2011
Rosa Estela Quiroz-Castañeda1, Claudia Martínez‐Anaya2, Laura Inés Cuervo-Soto1, Lorenzo Segovia2, Jorge Luis Folch‐Mallol1
1Laboratorio de Biología Molecular de Hongos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col. Chamilpa, Cuernavaca, 62209, Morelos, México
2Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001 Col. Chamilpa, Cuernavaca, 62209, Morelos, México

Tóm tắt

Abstract Background Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Results Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. Conclusions LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

Từ khóa


Tài liệu tham khảo

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 2002, 66 (3): 506-577. 10.1128/MMBR.66.3.506-577.2002.

Aro N, Pakula T, Pentilla M: Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 2005, 29 (4): 719-739. 10.1016/j.femsre.2004.11.006.

Wang Y, Vazquez-Duhalt R, Pickard MA: Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol. 2003, 49 (11): 675-682. 10.1139/w03-091.

Quiroz-Castaneda RE, Balcazar-Lopez E, Dantan-Gonzalez E, Martinez A, Folch-Mallol J, Martinez-Anaya C: Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electronic Journal of Biotechnology [online]. 2009, 12 (4): [http://ejbiotechnology.ucv.cl/content/vol12/issue4/full/3/index.html]

Quiroz-Castaneda RE, Perez-Mejia N, Martinez-Anaya C, Acosta-Urdapilleta L, Folch-Mallol J: Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus. Biodegradation. 2010,

McQueen-Mason S, Durachko DM, Cosgrove DJ: Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992, 4: 1425-1433. 10.1105/tpc.4.11.1425.

Cho HT, Cosgrove DJ: Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002, 14 (12): 3237-3253. 10.1105/tpc.006437.

Cho HT, Cosgrove DJ: Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000, 97 (17): 9783-9788. 10.1073/pnas.160276997.

Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A: Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (20): 11812-11817. 10.1073/pnas.191380498.

Civello PM, Powell AL, Sabehat A, Bennett AB: An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 1999, 121 (4): 1273-1280. 10.1104/pp.121.4.1273.

Rose JK, Lee HH, Bennett AB: Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94 (11): 5955-5960. 10.1073/pnas.94.11.5955.

Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D: The growing world of expansins. Plant Cell Physiol. 2002, 43 (12): 1436-1444. 10.1093/pcp/pcf180.

Lee Y, Choi D, Kende H: Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol. 2001, 4 (6): 527-532. 10.1016/S1369-5266(00)00211-9.

Li Y, Jones L, McQueen-Mason S: Expansins and cell growth. Curr Opin Plant Biol. 2003, 6 (6): 603-610. 10.1016/j.pbi.2003.09.003.

McQueen-Mason S, Cosgrove DJ: Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91 (14): 6574-6578. 10.1073/pnas.91.14.6574.

Cosgrove DJ, Bedinger P, Durachko DM: Group I allergens of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94 (12): 6559-6564. 10.1073/pnas.94.12.6559.

Sampedro J, Cosgrove DJ: The expansin superfamily. Genome biology. 2005, 6 (12): 242-10.1186/gb-2005-6-12-242.

Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y: Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol. 2010, 11 (1): 121-135. 10.1111/j.1364-3703.2009.00581.x.

Cosgrove DJ: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997, 9 (7): 1031-1041. 10.1105/tpc.9.7.1031.

Cosgrove DJ: Loosening of plant cell walls by expansins. Nature. 2000, 407 (6802): 321-326. 10.1038/35030000.

Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, et al: Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol. 2004, 55 (3): 311-314. 10.1007/s11103-004-0158-6.

Darley CP, Li Y, Schaap P, McQueen-Mason SJ: Expression of a family of expansin-like proteins during the development of Dictyostelium discoideum. FEBS Lett. 2003, 546 (2-3): 416-418. 10.1016/S0014-5793(03)00598-2.

Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH: Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 2009, 102 (5): 1342-1353. 10.1002/bit.22193.

Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, Kassuwi S, Metzler MC: The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiological and Molecular Plant Pathology. 2000, 57 (5): 221-233. 10.1006/pmpp.2000.0301.

Bouzarelou D, Billini M, Roumelioti K, Sophianopoulou V: EglD, a putative endoglucanase, with an expansin like domain is localized in the conidial cell wall of Aspergillus nidulans. Fungal Genet Biol. 2008, 45 (6): 839-850. 10.1016/j.fgb.2008.03.001.

Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem. 2002, 269 (17): 4202-4211. 10.1046/j.1432-1033.2002.03095.x.

Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, et al: Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105 (44): 16876-16881. 10.1073/pnas.0809382105.

Dantan-Gonzalez E, Vite-Vallejo O, Martinez-Anaya C, Mendez-Sanchez M, Gonzalez MC, Palomares LA, Folch-Mallol J: Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol. 2008, 11 (3): 163-169.

Inglis GD, Popp AP, Selinger LB, Kawchuk LM, Gaudet DA, McAllister TA: Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol. 2000, 46 (9): 860-865. 10.1139/cjm-46-9-860.

Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, Second

Kelley LA, Sternberg MJE: Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols. 2009, 4 (3): 363-371. 10.1038/nprot.2009.2.

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A: Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006, Chapter 5 (Unit 5): 6-

Mascorro-Gallardo JO, Covarrubias AA, Gaxiola R: Construction of a CUP1 promoter-based vector to modulate gene expression in Saccharomyces cerevisiae. Gene. 1996, 172 (1): 169-170. 10.1016/0378-1119(96)00059-5.

Gietz RD, Schiestl RH: Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007, 2 (1): 35-37. 10.1038/nprot.2007.14.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193 (1): 265-275.

Chen X-A, Ishida N, Todaka N, Nakamura R, Maruyama J-I, Takahashi H, Kitamoto K: Promotion of Efficient Saccharification with Aspergillus fumigatus AfSwo1 Towards Crystalline Cellulose. Appl Environ Microbiol. 2010, 76 (8): 2556-2561. 10.1128/AEM.02499-09.