Longitudinal and transverse coherent waves in media containing randomly distributed spheres
Tài liệu tham khảo
Varadan, 1980
Tsang, 2001
Martin, 2006
Peterson, 1974, Matrix formulation of acoustic scattering from an arbitrary number of scatterers, J. Acoust. Soc. Am., 56, 771, 10.1121/1.1903325
Chew, 1994, Efficient computation of three-dimensional scattering of vector electromagnetic waves, J. Opt. Soc. Amer., A11, 1528, 10.1364/JOSAA.11.001528
Koc, 1998, Calculation of acoustical scattering from a cluster of scatterers, J. Acoust. Soc. Am., 103, 721, 10.1121/1.421231
Gumerov, 2002, Computation of scattering from n spheres using multipole reexpansion, J. Acoust. Soc. Am., 112, 2688, 10.1121/1.1517253
Gumerov, 2005, Computation of scattering from clusters of spheres using the fast multipole method, J. Acoust. Soc. Am., 117, 1744, 10.1121/1.1853017
Ganesh, 2015, An efficient O (N) algorithm for computing O (N2) acoustic wave interactions in large N-obstacle three dimensional configurations, BIT, 55, 117, 10.1007/s10543-014-0491-3
Chekroun, 2012, Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers, Waves Random Complex Media, 22, 398, 10.1080/17455030.2012.704432
Rohfritsch, 2019, Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders, J. Acoust. Soc. Am., 145, 3320, 10.1121/1.5110310
Waterman, 1976, Matrix theory of elastic wave scattering, J. Acoust. Soc. Am., 60, 567, 10.1121/1.381130
Boström, 1980, Multiple scattering of elastic waves by bounded obstacles, J. Acoust. Soc. Am., 67, 399, 10.1121/1.383926
Doyle, 2006, Iterative simulation of elastic wave scattering in arbitrary dispersions of spherical particles, J. Acoust. Soc. Am., 119, 2599, 10.1121/1.2184989
Linton, 2006, Multiple scattering by multiple spheres: a new proof of the lloyd-berry formula for the effective wavenumber, SIAM J. Appl. Math., 66, 1649, 10.1137/050636401
Caleap, 2012, Coherent acoustic wave propagation in media with pair-correlated spheres, J. Acoust. Soc. Am., 131, 2036, 10.1121/1.3675011
Foldy, 1945, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107, 10.1103/PhysRev.67.107
Lax, 1952, Multiple scattering of waves. II. The effective field in dense systems, Phys. Rev., 85, 621, 10.1103/PhysRev.85.621
Fikioris, 1964, Multiple scattering of waves II. “Hole corrections” in the scalar case, J. Math. Phys., 5, 1413, 10.1063/1.1704077
Karal, 1964, Elastic electromagnetic and other waves in a random medium, J. Math. Phys., 5, 537, 10.1063/1.1704145
Sabina, 1988, A simple self-consistent analysis of wave propagation in particulate composites, Wave Motion, 10, 127, 10.1016/0165-2125(88)90038-8
Kim, 1995, Dispersion of elastic waves in random particulate composites, J. Acoust. Soc. Am., 97, 1380, 10.1121/1.412080
Gower, 2019, Multiple waves propagate in random particulate materials, SIAM J. Appl. Math., 79, 2569, 10.1137/18M122306X
Varadan, 1985, A multiple scattering theory for elastic wave propagation in discrete random media, J. Acoust. Soc. Am., 77, 375, 10.1121/1.391910
Kinra, 1982, Influence of particle resonance on wave propagation in a random particulate composite, Mech. Res. Commun., 9, 109, 10.1016/0093-6413(82)90008-8
Tsang, 1982, Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters, J. Appl. Phys., 53, 7162, 10.1063/1.331611
Luppé, 2012, Effective wavenumbers for thermo-viscoelastic media containing random configurations of spherical scatterers, J. Acoust. Soc. Am., 131, 1113, 10.1121/1.3672690
Luppé, 2017, Coherent wave propagation in viscoelastic media with mode conversions and pair-correlated scatterers, Wave Motion, 72, 244, 10.1016/j.wavemoti.2017.03.002
Kristensson, 2015, Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation, J. Quant. Spectrosc. Radiat. Transfer, 164, 97, 10.1016/j.jqsrt.2015.06.004
Gustavsson, 2016, Multiple scattering by a collection of randomly located obstacles – numerical implementation of the coherent fields, J. Quant. Spectrosc. Radiat. Transfer, 185, 95, 10.1016/j.jqsrt.2016.08.018
Einspruch, 1960, Scattering of a plane transverse wave by a spherical obstacle in an elastic medium, J. Appl. Phys., 31, 806, 10.1063/1.1735701
Kargl, 1993, A transition-matrix formulation of scattering in homogeneous saturated porous media, J. Acoust. Soc. Am., 94, 1527, 10.1121/1.408129
Liu, 2009, Scattering of plane transverse waves by spherical inclusions in a poroelastic medium, Geophys. J. Int., 176, 938, 10.1111/j.1365-246X.2008.04026.x
Simon, 2021, Propagation of coherent shear waves in scattering elastic media, Phys. Rev. E, 103, L051001(5), 10.1103/PhysRevE.103.L051001
Al-Lashi, 2014, Uncertainties in ultrasonic particle sizing in solid-in-liquid suspensions, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 1835, 10.1109/TUFFC.2013.006171
Brunet, 2015, Soft 3D acoustic metamaterial with negative index, Nature Mater, 14, 384, 10.1038/nmat4164
Forrester, 2016, Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields, Nanoscale, 8, 5497, 10.1039/C5NR07396K
Simon, 2020
D. Sornette, 1989, Acoustic waves in random media. I. Weak disorder regime, Acustica, 67, 199
Brill, 1980, Resonance theory of elastic shear-wave scattering from spherical fluid obstacles in solids, J. Acoust. Soc. Am., 67, 414, 10.1121/1.383927
Abramowitz, 1974
Tsang, 2000
Tsang, 2001
Cruzan, 1962, Translational addition theorems for spherical vector wave functions, Quat. J. Appl. Math., 20, 33, 10.1090/qam/132851
Xu, 1998, Efficient evaluation of vector translation coefficients in multiple light scattering theories, J. Comput. Phys., 139, 137, 10.1006/jcph.1997.5867
Gower, 2021, Effective waves for random three-dimensional particulate materials, New J. Phys., 23, 10.1088/1367-2630/abdfee
Valier-Brasier, 2021
Duranteau, 2016, Random acoustic metamaterial with a subwavelength dipolar resonance, J. Acoust. Soc. Am., 139, 3341, 10.1121/1.4950727
Lefebvre, 2018, Ultrasonic rheology of visco-elastic materials using shear and longitudinal waves, Appl. Phys. Lett., 112, 10.1063/1.5029905
Simon, 2019, Viscoelastic shear modulus measurement of thin materials by interferometry at ultrasonic frequencies, J. Acoust. Soc. Am., 146, 3131, 10.1121/1.5131026
Valier-Brasier, 2017, Propagation of coherent transverse waves: Influence of the translational and rotational subwavelength resonances, J. Acoust. Soc. Am., 142, 512, 10.1121/1.4996129
Xu, 1996, Calculation of the addition coefficients in electromagnetic multisphere-scattering theory, J. Comput. Phys., 127, 285, 10.1006/jcph.1996.0175