Longitudinal and transverse coherent waves in media containing randomly distributed spheres

Wave Motion - Tập 115 - Trang 103082 - 2022
Francine Luppé1, Jean-Marc Conoir2, Tony Valier-Brasier2
1Laboratoire Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, Le Havre, F-76600, France
2Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France

Tài liệu tham khảo

Varadan, 1980

Tsang, 2001

Martin, 2006

Peterson, 1974, Matrix formulation of acoustic scattering from an arbitrary number of scatterers, J. Acoust. Soc. Am., 56, 771, 10.1121/1.1903325

Chew, 1994, Efficient computation of three-dimensional scattering of vector electromagnetic waves, J. Opt. Soc. Amer., A11, 1528, 10.1364/JOSAA.11.001528

Koc, 1998, Calculation of acoustical scattering from a cluster of scatterers, J. Acoust. Soc. Am., 103, 721, 10.1121/1.421231

Gumerov, 2002, Computation of scattering from n spheres using multipole reexpansion, J. Acoust. Soc. Am., 112, 2688, 10.1121/1.1517253

Gumerov, 2005, Computation of scattering from clusters of spheres using the fast multipole method, J. Acoust. Soc. Am., 117, 1744, 10.1121/1.1853017

Ganesh, 2015, An efficient O (N) algorithm for computing O (N2) acoustic wave interactions in large N-obstacle three dimensional configurations, BIT, 55, 117, 10.1007/s10543-014-0491-3

Chekroun, 2012, Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers, Waves Random Complex Media, 22, 398, 10.1080/17455030.2012.704432

Rohfritsch, 2019, Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders, J. Acoust. Soc. Am., 145, 3320, 10.1121/1.5110310

Waterman, 1976, Matrix theory of elastic wave scattering, J. Acoust. Soc. Am., 60, 567, 10.1121/1.381130

Boström, 1980, Multiple scattering of elastic waves by bounded obstacles, J. Acoust. Soc. Am., 67, 399, 10.1121/1.383926

Doyle, 2006, Iterative simulation of elastic wave scattering in arbitrary dispersions of spherical particles, J. Acoust. Soc. Am., 119, 2599, 10.1121/1.2184989

Linton, 2006, Multiple scattering by multiple spheres: a new proof of the lloyd-berry formula for the effective wavenumber, SIAM J. Appl. Math., 66, 1649, 10.1137/050636401

Caleap, 2012, Coherent acoustic wave propagation in media with pair-correlated spheres, J. Acoust. Soc. Am., 131, 2036, 10.1121/1.3675011

Foldy, 1945, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107, 10.1103/PhysRev.67.107

Lax, 1952, Multiple scattering of waves. II. The effective field in dense systems, Phys. Rev., 85, 621, 10.1103/PhysRev.85.621

Fikioris, 1964, Multiple scattering of waves II. “Hole corrections” in the scalar case, J. Math. Phys., 5, 1413, 10.1063/1.1704077

Karal, 1964, Elastic electromagnetic and other waves in a random medium, J. Math. Phys., 5, 537, 10.1063/1.1704145

Sabina, 1988, A simple self-consistent analysis of wave propagation in particulate composites, Wave Motion, 10, 127, 10.1016/0165-2125(88)90038-8

Kim, 1995, Dispersion of elastic waves in random particulate composites, J. Acoust. Soc. Am., 97, 1380, 10.1121/1.412080

Gower, 2019, Multiple waves propagate in random particulate materials, SIAM J. Appl. Math., 79, 2569, 10.1137/18M122306X

Varadan, 1985, A multiple scattering theory for elastic wave propagation in discrete random media, J. Acoust. Soc. Am., 77, 375, 10.1121/1.391910

Kinra, 1982, Influence of particle resonance on wave propagation in a random particulate composite, Mech. Res. Commun., 9, 109, 10.1016/0093-6413(82)90008-8

Tsang, 1982, Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters, J. Appl. Phys., 53, 7162, 10.1063/1.331611

Luppé, 2012, Effective wavenumbers for thermo-viscoelastic media containing random configurations of spherical scatterers, J. Acoust. Soc. Am., 131, 1113, 10.1121/1.3672690

Luppé, 2017, Coherent wave propagation in viscoelastic media with mode conversions and pair-correlated scatterers, Wave Motion, 72, 244, 10.1016/j.wavemoti.2017.03.002

Kristensson, 2015, Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation, J. Quant. Spectrosc. Radiat. Transfer, 164, 97, 10.1016/j.jqsrt.2015.06.004

Gustavsson, 2016, Multiple scattering by a collection of randomly located obstacles – numerical implementation of the coherent fields, J. Quant. Spectrosc. Radiat. Transfer, 185, 95, 10.1016/j.jqsrt.2016.08.018

Einspruch, 1960, Scattering of a plane transverse wave by a spherical obstacle in an elastic medium, J. Appl. Phys., 31, 806, 10.1063/1.1735701

Kargl, 1993, A transition-matrix formulation of scattering in homogeneous saturated porous media, J. Acoust. Soc. Am., 94, 1527, 10.1121/1.408129

Liu, 2009, Scattering of plane transverse waves by spherical inclusions in a poroelastic medium, Geophys. J. Int., 176, 938, 10.1111/j.1365-246X.2008.04026.x

Simon, 2021, Propagation of coherent shear waves in scattering elastic media, Phys. Rev. E, 103, L051001(5), 10.1103/PhysRevE.103.L051001

Al-Lashi, 2014, Uncertainties in ultrasonic particle sizing in solid-in-liquid suspensions, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 1835, 10.1109/TUFFC.2013.006171

Brunet, 2015, Soft 3D acoustic metamaterial with negative index, Nature Mater, 14, 384, 10.1038/nmat4164

Forrester, 2016, Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields, Nanoscale, 8, 5497, 10.1039/C5NR07396K

Simon, 2020

Sahay, 2008, On the Biot slow S-wave, Geophysics, 73, N19, 10.1190/1.2938636

D. Sornette, 1989, Acoustic waves in random media. I. Weak disorder regime, Acustica, 67, 199

Brill, 1980, Resonance theory of elastic shear-wave scattering from spherical fluid obstacles in solids, J. Acoust. Soc. Am., 67, 414, 10.1121/1.383927

Abramowitz, 1974

Tsang, 2000

Tsang, 2001

Cruzan, 1962, Translational addition theorems for spherical vector wave functions, Quat. J. Appl. Math., 20, 33, 10.1090/qam/132851

Xu, 1998, Efficient evaluation of vector translation coefficients in multiple light scattering theories, J. Comput. Phys., 139, 137, 10.1006/jcph.1997.5867

Gower, 2021, Effective waves for random three-dimensional particulate materials, New J. Phys., 23, 10.1088/1367-2630/abdfee

Valier-Brasier, 2021

Duranteau, 2016, Random acoustic metamaterial with a subwavelength dipolar resonance, J. Acoust. Soc. Am., 139, 3341, 10.1121/1.4950727

Lefebvre, 2018, Ultrasonic rheology of visco-elastic materials using shear and longitudinal waves, Appl. Phys. Lett., 112, 10.1063/1.5029905

Simon, 2019, Viscoelastic shear modulus measurement of thin materials by interferometry at ultrasonic frequencies, J. Acoust. Soc. Am., 146, 3131, 10.1121/1.5131026

Valier-Brasier, 2017, Propagation of coherent transverse waves: Influence of the translational and rotational subwavelength resonances, J. Acoust. Soc. Am., 142, 512, 10.1121/1.4996129

Xu, 1996, Calculation of the addition coefficients in electromagnetic multisphere-scattering theory, J. Comput. Phys., 127, 285, 10.1006/jcph.1996.0175