Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression

I.-Fan Liu1,2, Tzu-Chieh Lin3,4, Shu-Chi Wang5, Chia-Hung Yen6, Chia-Yang Li7, Hsuan-Fu Kuo8,3,7,9, Chong-Chao Hsieh10,11,4, Chia-Yuan Chang12, Chuang-Rung Chang13,14, Yung-Hsiang Chen15,16, Yu-Ru Liu17, Tsung-Ying Lee17, Chi-Yuan Huang17, Chih-Hsin Hsu18, Shing-Jong Lin19,1,20,21,2, Po-Len Liu17,22,23
1Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
2Heart Center, Cheng Hsin General Hospital, Taipei, Taiwan
3Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
4Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
5Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
6Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
7Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
8Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
9Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
10Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
11Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
12Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
13Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
14Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
15Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
16Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
17Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
18Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
19Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
20Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
21Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
22Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
23Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan

Tóm tắt

Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.

Từ khóa


Tài liệu tham khảo

de Souza GM, de Albuquerque Borborema ME, de Lucena TMC, da Silva Santos AF, de Lima BR, de Oliveira DC, de Azevêdo SJ. Caveolin-1 (CAV-1) up regulation in metabolic syndrome: all roads leading to the same end. Mol Biol Rep. 2020;47(11):9245–50.

Yang Y, Kurian J, Schena G, Johnson J, Kubo H, Travers JG, Kang C, Lucchese AM, Eaton DM, Lv M, et al. Cardiac remodeling during pregnancy with metabolic syndrome: prologue of pathological remodeling. Circulation. 2021;143(7):699–712.

Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806.

Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol. 2017;16(1):155.

Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, Rochon ER, Dent MR, Levine AR, Baust JJ, et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation. 2021;144(8):615–37.

Zhang X, Liu H, Hao Y, Xu L, Zhang T, Liu Y, Guo L, Zhu L, Pei Z. Coenzyme Q10 protects against hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice. Lipids Health Dis. 2018;17(1):279.

Taskaeva I, Bgatova N. Microvasculature in hepatocellular carcinoma: an ultrastructural study. Microvasc Res. 2021;133: 104094.

LeVine DN, Cianciolo RE, Linder KE, Bizikova P, Birkenheuer AJ, Brooks MB, Salous AK, Nordone SK, Bellinger DA, Marr H, et al. Endothelial alterations in a canine model of immune thrombocytopenia. Platelets. 2019;30(1):88–97.

Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res. 2000;17(9):1035–48.

Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol CB. 2018;28(8):R402–5.

Harding IC, Mitra R, Mensah SA, Herman IM, Ebong EE. Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation. J Transl Med. 2018;16(1):364.

Yokomori H, Ando W, Oda M. Caveolin-1 is related to lipid droplet formation in hepatic stellate cells in human liver. Acta Histochem. 2019;121(2):113–8.

Raudenska M, Gumulec J, Balvan J, Masarik M. Caveolin-1 in oncogenic metabolic symbiosis. Int J Cancer. 2020;147(7):1793–807.

Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer. 2016;15(1):71.

Núñez-Wehinger S, Ortiz RJ, Díaz N, Díaz J, Lobos-González L, Quest AF. Caveolin-1 in cell migration and metastasis. Curr Mol Med. 2014;14(2):255–74.

Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–21.

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73(3):924–67.

Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1802–9.

Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 2018;40(2):215–24.

Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev. 2021;42(1):29–55.

Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial dynamics: shaping and remodeling an organelle network. Curr Opin Cell Biol. 2021;68:28–36.

Yang M, Li C, Sun L. Mitochondria-associated membranes (MAMs): a novel therapeutic target for treating metabolic syndrome. Curr Med Chem. 2021;28(7):1347–62.

Gao P, Yan Z, Zhu Z. Mitochondria-associated endoplasmic reticulum membranes in cardiovascular diseases. Front Cell Dev Biol. 2020;8: 604240.

Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: possible therapeutic targets in heart-associated diseases. Pharmacol Res. 2020;156: 104758.

Ait-Aissa K, Nguyen QM, Gabani M, Kassan A, Kumar S, Choi SK, Gonzalez AA, Khataei T, Sahyoun AM, Chen C, et al. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc Diabetol. 2020;19(1):136.

Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1–19.

Shamsaldeen YA, Lione LA, Benham CD. Dysregulation of TRPV4, eNOS and caveolin-1 contribute to endothelial dysfunction in the streptozotocin rat model of diabetes. Eur J Pharmacol. 2020;888: 173441.

Shamsaldeen YA, Ugur R, Benham CD, Lione LA. Diabetic dyslipidaemia is associated with alterations in eNOS, caveolin-1, and endothelial dysfunction in streptozotocin treated rats. Diabetes Metab Res Rev. 2018;34(5): e2995.

Zhang X, Fernández-Hernando C. Transport of LDLs into the arterial wall: impact in atherosclerosis. Curr Opin Lipidol. 2020;31(5):279–85.

Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S. Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 2016;131(4):505–23.

White CR, Datta G, Giordano S. High-density lipoprotein regulation of mitochondrial function. Adv Exp Med Biol. 2017;982:407–29.

Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5.

Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014;130(7):554–64.

Engin AB. What is lipotoxicity? Adv Exp Med Biol. 2017;960:197–220.

Nishi H, Higashihara T, Inagi R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients. 2019;11(7):1664.

Magnifico MC, Oberkersch RE, Mollo A, Giambelli L, Grooten Y, Sarti P, Calabrese GC, Arese M. VLDL induced modulation of nitric oxide signalling and cell redox homeostasis in HUVEC. Oxid Med Cell Longev. 2017;2017:2697364.

Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol. 2014;13:159.

Bhanpuri NH, Hallberg SJ, Williams PT, McKenzie AL, Ballard KD, Campbell WW, McCarter JP, Phinney SD, Volek JS. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study. Cardiovasc Diabetol. 2018;17(1):56.

Mathew R. Critical role of caveolin-1 loss/dysfunction in pulmonary hypertension. Med Sci. 2021;9(4):58.

Rutkowski JM, Halberg N, Wang QA, Holland WL, Xia JY, Scherer PE. Differential transendothelial transport of adiponectin complexes. Cardiovasc Diabetol. 2014;13:47.

Zhang X, Ramirez CM, Aryal B, Madrigal-Matute J, Liu X, Diaz A, Torrecilla-Parra M, Suarez Y, Cuervo AM, Sessa WC, et al. Cav-1 (Caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40(6):1510–22.

Wang S, Ichinomiya T, Terada Y, Wang D, Patel HH, Head BP. Synapsin-promoted caveolin-1 overexpression maintains mitochondrial morphology and function in PSAPP Alzheimer’s disease mice. Cells. 2021;10(9):2487.

Yu DM, Jung SH, An HT, Lee S, Hong J, Park JS, Lee H, Lee H, Bahn MS, Lee HC, et al. Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction. Aging Cell. 2017;16(4):773–84.

Ilha M, Meira Martins LA, da Silveira MK, Dias CK, Thomé MP, Petry F, Rohden F, Borojevic R, Trindade VMT, Klamt F, et al. Caveolin-1 influences mitochondrial plasticity and function in hepatic stellate cell activation. Cell Biol Int. 2022;46(11):1787–800.

Zeng W, Tang J, Li H, Xu H, Lu H, Peng H, Lin C, Gao R, Lin S, Lin K, et al. Caveolin-1 deficiency protects pancreatic β cells against palmitate-induced dysfunction and apoptosis. Cell Signal. 2018;47:65–78.

Fernández Casafuz AB, De Rossi MC, Bruno L. Morphological fluctuations of individual mitochondria in living cells. J Phys Condens Matter. 2021;34(9):094005.

Nemani N, Carvalho E, Tomar D, Dong Z, Ketschek A, Breves SL, Jaña F, Worth AM, Heffler J, Palaniappan P, et al. MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca(2+) stress. Cell Rep. 2018;23(4):1005–19.

Sun X, Alford J, Qiu H. Structural and functional remodeling of mitochondria in cardiac diseases. Int J Mol Sci. 2021;22(8):4167.

Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12.

Brandt T, Mourier A, Tain LS, Partridge L, Larsson NG, Kühlbrandt W. Changes of mitochondrial ultrastructure and function during ageing in mice and drosophila. Elife. 2017;6:e24662.

Pfluger PT, Kabra DG, Aichler M, Schriever SC, Pfuhlmann K, García VC, Lehti M, Weber J, Kutschke M, Rozman J, et al. Calcineurin links mitochondrial elongation with energy metabolism. Cell Metab. 2015;22(5):838–50.

Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, Fiel MI, Goossens N, Chou HI, Hoshida Y, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018;69(2):385–95.

Hsieh CC, Li CY, Hsu CH, Chen HL, Chen YH, Liu YP, Liu YR, Kuo HF, Liu PL. Mitochondrial protection by simvastatin against angiotensin II-mediated heart failure. Br J Pharmacol. 2019;176(19):3791–804.

Kuo HF, Hsieh CC, Wang SC, Chang CY, Hung CH, Kuo PL, Liu YR, Li CY, Liu PL. Simvastatin attenuates cardiac fibrosis via regulation of cardiomyocyte-derived exosome secretion. J Clin Med. 2019;8(6):794.