Vận chuyển điện tử đường dài diễn ra toàn cầu trong các trầm tích biển

Biogeosciences - Tập 14 Số 3 - Trang 683-701
Laurine D. W. Burdorf1, Anton Tramper1, Dorina Seitaj2,1, Lorenz Meire3,4, Silvia Hidalgo‐Martinez1, Eva‐Maria Zetsche5,1, Henricus T. S. Boschker1, Filip J. R. Meysman2,1
1NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, and Utrecht University, Korringaweg 7, 4401 NT Yerseke, the Netherlands
2Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
3Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
4Greenland Institute of Natural Resources, Greenland Climate Research Centre, P.O. Box 570, Kivioq 5, 3900 Nuuk, Greenland
5Department of Marine Sciences, University of Gothenburg, Carl Skottsberg gata 22B, 41319 Gothenburg, Sweden

Tóm tắt

Tóm tắt. Gần đây, các vi khuẩn sợi dài đã được báo cáo có khả năng dẫn điện tử qua các khoảng cách lên đến centimet trong các trầm tích biển. Những vi khuẩn này, được gọi là vi khuẩn cáp, thực hiện một dạng oxy hóa lưu huỳnh điện sinh, trong đó vận chuyển điện tử khoảng cách dài kết nối quá trình oxy hóa sulfide ở các chân trầm tích sâu hơn với quá trình khử oxy ở lớp trầm tích trên cùng. Oxy hóa lưu huỳnh điện sinh có tác động mạnh mẽ đến địa hóa học trầm tích địa phương, nhưng hiện tại chưa biết quy trình này phổ biến đến mức nào trong lòng biển. Trong bài báo này, chúng tôi cung cấp một đánh giá tiên tiến về sự phân bố toàn cầu của nó bằng cách kết hợp các quan sát thực địa mới với các báo cáo trước đó từ tài liệu. Tổng hợp này chứng minh rằng oxy hóa lưu huỳnh điện sinh, và do đó là vận chuyển điện tử khoảng cách dài của vi khuẩn, là một hiện tượng phổ biến trong lòng biển hiện nay. Quy trình này được tìm thấy trong các trầm tích ven biển ở các vùng khí hậu khác nhau (gần Hà Lan, Greenland, Mỹ, Úc) và phát triển mạnh mẽ trên nhiều kiểu môi trường ven biển khác nhau (cửa sông, đầm lầy mặn, rừng ngập mặn, các bồn trầm tích ven biển thiếu oxy, bãi triều). Việc kết hợp giữa sự xuất hiện phổ biến và dấu ấn địa hóa học mạnh mẽ ở địa phương gợi ý rằng oxy hóa lưu huỳnh điện sinh có thể là một thành phần quan trọng, và cho đến nay bị bỏ qua, trong chu trình carbon, lưu huỳnh và các nguyên tố khác của biển.

Từ khóa


Tài liệu tham khảo

Baco, A. R., Rowden, A. A., Levin, L. A., Smith, C. R., and Bowden, D. A.: Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin, Mar. Geol., 272, 251–259, https://doi.org/10.1016/j.margeo.2009.06.015, 2010.

Bergfeld, C.: Macrofaunal community pattern in an intertidal sandflat: Effects of organic enrichment via biodeposition by mussel beds, First results, Senckenberg, Maritima, 29, 23–27, https://doi.org/10.1007/BF03043114, 1999.

Bjerg, J. T., Damgaard, L. R., Holm, S. A., Schramm, A., and Nielsen, L. P.: Motility of Electric Cable Bacteria, Appl. Environ. Microb., 82, 3816–3821, https://doi.org/10.1128/AEM.01038-16, 2016.

Breslin, V. T., Sañudo-Wilhelmy, S. A., and Sanudo-Wilhelmy, S. A.: High Spatial Resolution Sampling of Metals in the Sediment and Water Column in Port Jefferson Harbor, New York, Estuaries, 22, 669–680, https://doi.org/10.2307/1353054, 1999.

Burdorf, L. D. W., Hidalgo-Martinez, S., Cook, P. L. M., and Meysman, F. J. R.: Long-distance electron transport by cable bacteria in mangrove sediments, Mar. Ecol.-Prog. Ser., 545, 1–8, https://doi.org/10.3354/meps11635, 2016.

Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P., and Hall, P. O. J.: Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113, 27–40, https://doi.org/10.1016/0025-3227(93)90147-N, 1993.

Ciutat, A., Widdows, J., and Readman, J. W.: Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons, Mar. Ecol.-Prog. Ser., 328, 51–64, https://doi.org/10.3354/meps328051, 2006.

Cuomo, C., Cochran, J. K., and Turekian, K. K.: Geochemistry of the Long Island Sound Estuary, in Long Island Sound, edited by: Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E., and Garza, C., 159–201, Springer New York, USA, 2014.

Damgaard, L. R., Risgaard-Petersen, N., and Nielsen, L. P.: Electric potential microelectrode for studies of electrobiogeophysics, J. Geophys. Res.-Biogeo., 119, 1906–1917, https://doi.org/10.1002/2014JG002665, 2014.

Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.

Ellaway, M., Hart, B. T., and Beckett, R.: Trace metals in sediments from the Yarra River, Mar. Freshwater Res., 33, 761–778, 1982.

Fernandez, C., Pasqualini, V., Boudouresque, C.-F., Johnson, M., Ferrat, L., Caltagirone, A., and Mouillot, D.: Effect of an exceptional rainfall event on the sea urchin (Paracentrotus lividus) stock and seagrass distribution in a Mediterranean coastal lagoon, Estuar. Coast. Shelf S., 68, 259–270, https://doi.org/10.1016/j.ecss.2006.02.020, 2006.

Fofonoff, N. P. and Millard, R. C.: Algorithms for computation of fundamental properties of seawater, UNESCO Tech. Pap. Mar. Sci. Doc. Tech. Unesco Sur Sci. Mer, Unesco, Paris, 1983.

Godinho-Orlandi, M. J. L. and Jones, J. G.: The distribution of some genera of filamentous bacteria in littoral and profundal lake sediments, Microbiology, 123, 91–101, https://doi.org/10.1099/00221287-123-1-91, 1981.

Grünke, S., Felden, J., Lichtschlag, A., Girnth, A.-C., De Beer, D., Wenzhöfer, F., and Boetius, A.: Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea): Niche differentiation among sulfide oxidizers, Geobiology, 9, 330–348, https://doi.org/10.1111/j.1472-4669.2011.00281.x, 2011.

Jahnke, R. A.: Early diagenesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California, J. Mar. Res., 48, 413–436, 1990.

Kato, S. and Yamagishi, A.: A novel large filamentous deltaproteobacterium on hydrothermally inactive sulfide chimneys of the Southern Mariana Trough, Deep-Sea Res. Pt. I, 110, 99–105, https://doi.org/10.1016/j.dsr.2015.12.015, 2016.

Larsen, S., Nielsen, L. P., and Schramm, A.: Cable bacteria associated with long-distance electron transport in New England salt marsh sediment, Environ. Microbiol. Rep., 7, 175–179, https://doi.org/10.1111/1758-2229.12216, 2015.

Liang, J.-B., Chen, Y.-Q., Lan, C.-Y., Tam, N. F. Y., Zan, Q.-J., and Huang, L.-N.: Recovery of novel bacterial diversity from mangrove sediment, Mar. Biol., 150, 739–747, https://doi.org/10.1007/s00227-006-0377-2, 2006.

Malkin, S. Y. and Meysman, F. J. R.: Rapid redox Signal transmission by “Cable Bacteria” beneath a photosynthetic biofilm, Appl. Environ. Microb., 81, 948–956, https://doi.org/10.1128/AEM.02682-14, 2015.

Malkin, S. Y., Rao, A. M., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E.-M., Hidalgo-Martinez, S., Boschker, H. T., and Meysman, F. J.: Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor, ISME J., 8, 1843–1854, https://doi.org/10.1038/ismej.2014.41, 2014.

Malkin, S., Seitaj, D., Burdorf, L., Nieuwhof, S., Hidalgo-Martinez, S., Tramper, A., Geeraert, N., de Stigter, H., and Meysman, F.: Electrogenic sulfide oxidation by cable bacteria in bivalve reef sediments, Front. Mar. Sci., 4, https://doi.org/10.3389/fmars.2017.00028, 2017.

Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H.: Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15, 593–600, https://doi.org/10.1016/S0723-2020(11)80121-9, 1992.

Marzocchi, U., Trojan, D., Larsen, S., Meyer, R. L., Revsbech, N. P., Schramm, A., Nielsen, L. P., and Risgaard-Petersen, N.: Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment, ISME J., 8, 1682–1690, https://doi.org/10.1038/ismej.2014.19, 2014.

Meysman, F. J. R., Middelburg, J. J., and Heip, C. H. R.: Bioturbation: a fresh look at Darwin's last idea, Trends Ecol. Evol., 21, 688–695, https://doi.org/10.1016/j.tree.2006.08.002, 2006.

Meysman, F. J. R., Risgaard-Petersen, N., Malkin, S. Y., and Nielsen, L. P.: The geochemical fingerprint of microbial long-distance electron transport in the seafloor, Geochim. Cosmochim. Ac., 152, 122–142, https://doi.org/10.1016/j.gca.2014.12.014, 2015.

Müller, H., Bosch, J., Griebler, C., Damgaard, L. R., Nielsen, L. P., Lueders, T., and Meckenstock, R. U.: Long-distance electron transfer by cable bacteria in aquifer sediments, ISME J., 10, 2010–2019, https://doi.org/10.1038/ismej.2015.250, 2016.

Nielsen, L. P. and Risgaard-Petersen, N.: Rethinking sediment biogeochemistry after the discovery of electric currents, Annu. Rev. Mar. Sci., 7, 425–442, https://doi.org/10.1146/annurev-marine-010814-015708, 2015.

Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and Sayama, M.: Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071–1074, https://doi.org/10.1038/nature08790, 2010.

Pernthaler, A., Pernthaler, J., and Amann, R.: Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria, Appl. Environ. Microb., 68, 3094–3101, https://doi.org/10.1128/AEM.68.6.3094-3101.2002, 2002.

Pernthaler, J., Glockner, F., Schonhuber, W., and Amann, R.: Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes, Method. Microbiol., 30, 207–226, 2001.

Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., and Nielsen, L. P.: Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218–221, https://doi.org/10.1038/nature11586, 2012.

Rao, A. M. F., Risgaard-Petersen, N., and Neumeier, U.: Electrogenic sulfur oxidation in a northern saltmarsh (St. Lawrence Estuary, Canada), Can. J. Microbiol., 62, 530–537, https://doi.org/10.1139/cjm-2015-0748, 2016a.

Rao, A. M. F., Malkin, S. Y., Montserrat, F., and Meysman, F. J. R.: Alkalinity production in intertidal sands intensified by lugworm bioirrigation, Estuar. Coast. Shelf S., 148, 36–47, https://doi.org/10.1016/j.ecss.2014.06.006, 2014.

Rao, A. M. F., Malkin, S. Y., Hidalgo-Martinez, S., and Meysman, F. J. R.: The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment, Geochim. Cosmochim. Ac., 172, 265–286, https://doi.org/10.1016/j.gca.2015.09.014, 2016b.

Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B., and Martin, J. B.: Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin, Geochim. Cosmochim. Ac., 60, 4037–4057, 1996.

Revil, A., Mendonça, C. A., Atekwana, E. A., Kulessa, B., Hubbard, S. S., and Bohlen, K. J.: Understanding biogeobatteries: Where geophysics meets microbiology, J. Geophys. Res.-Biogeo., 115, G00G02, https://doi.org/10.1029/2009JG001065, 2010.

Risgaard-Petersen, N., Revil, A., Meister, P., and Nielsen, L. P.: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment, Geochim. Cosmochim. Ac., 92, 1–13, https://doi.org/10.1016/j.gca.2012.05.036, 2012.

Risgaard-Petersen, N., Damgaard, L. R., Revil, A., and Nielsen, L. P.: Mapping electron sources and sinks in a marine biogeobattery, J. Geophys. Res.-Biogeo., 119, 1475–1486, https://doi.org/10.1002/2014JG002673, 2014.

Risgaard-Petersen, N., Kristiansen, M., Frederiksen, R. B., Dittmer, A. L., Bjerg, J. T., Trojan, D., Schreiber, L., Damgaard, L. R., Schramm, A., and Nielsen, L. P.: Cable Bacteria in Freshwater Sediments, Appl. Environ. Microb., 81, 6003–6011, https://doi.org/10.1128/AEM.01064-15, 2015.

Roberts, K. L., Eate, V. M., Eyre, B. D., Holland, D. P., and Cook, P. L. M.: Hypoxic events stimulate nitrogen recycling in a shallow salt-wedge estuary: The Yarra River Estuary, Australia, Limnol. Oceanogr., 57, 1427–1442, https://doi.org/10.4319/lo.2012.57.5.1427, 2012.

Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., Cook, P., and Thamdrup, B.: Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary, Limnol. Oceanogr., 61, 365–381, https://doi.org/10.1002/lno.10220, 2016.

Sayama, M.: Seasonal dynamics of sulfide oxidation processes in Tokyo Bay dead zone sediment, Goldschmidt Conference Abstracts, Prague, 2011.

Schauer, R., Røy, H., Augustin, N., Gennerich, H.-H., Peters, M., Wenzhoefer, F., Amann, R., and Meyerdierks, A.: Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field, Environ. Microbiol., 13, 2633–2648, https://doi.org/10.1111/j.1462-2920.2011.02530.x, 2011.

Schauer, R., Risgaard-Petersen, N., Kjeldsen, K. U., Tataru Bjerg, J. J., Jørgensen, B. B., Schramm, A., and Nielsen, L. P.: Succession of cable bacteria and electric currents in marine sediment, ISME J., 8, 1314–1322, https://doi.org/10.1038/ismej.2013.239, 2014.

Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S. Y., Burdorf, L. D. W., Slomp, C. P., and Meysman, F. J. R.: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins, P. Natl. Acad. Sci. USA, 112, 13278–13283, https://doi.org/10.1073/pnas.1510152112, 2015.

Soetaert, K., Petzoldt, T., and Meysman, F.: marelac: Tools for Aquatic Sciences. R package version 2.1, available at: http: //cran.r-project.org/web/packages/marelac, 2010.

Sørensen, H., Meire, L., Juul-Pedersen, T., de Stigter, H., Meysman, F., Rysgaard, S., Thamdrup, B., and Glud, R.: Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic study, Mar. Ecol.-Prog. Ser., 539, 1–17, https://doi.org/10.3354/meps11503, 2015.

Sulu-Gambari, F., Seitaj, D., Meysman, F. J. R., Schauer, R., Polerecky, L., and Slomp, C. P.: Cable Bacteria Control Iron–Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin, Environ. Sci. Technol., 50, 1227–1233, https://doi.org/10.1021/acs.est.5b04369, 2016a.

Sulu-Gambari, F., Seitaj, D., Behrends, T., Banerjee, D., Meysman, F. J. R., and Slomp, C. P.: Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin, Geochim. Cosmochim. Ac., 192, 49–69, https://doi.org/10.1016/j.gca.2016.07.028, 2016b.

Trojan, D., Schreiber, L., Bjerg, J. T., Bøggild, A., Yang, T., Kjeldsen, K. U., and Schramm, A.: A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema, Syst. Appl. Microbiol., 39, 297–306, https://doi.org/10.1016/j.syapm.2016.05.006, 2016.

van der Heide, T., Govers, L. L., de Fouw, J., Olff, H., van der Geest, M., van Katwijk, M. M., Piersma, T., van de Koppel, J., Silliman, B. R., Smolders, A. J. P., and van Gils, J. A.: A three-stage symbiosis forms the foundation of seagrass ecosystems, Science, 336, 1432–1434, https://doi.org/10.1126/science.1219973, 2012.

van der Zee, E. M., van der Heide, T., Donadi, S., Eklöf, J. S., Eriksson, B. K., Olff, H., van der Veer, H. W., and Piersma, T.: Spatially extended habitat modification by intertidal reef-building bivalves has implications for consumer-resource interactions, Ecosystems, 15, 664–673, 2012.

van de Velde, S., Lesven, L., Burdorf, L. D. W., Hidalgo-Martinez, S., Geelhoed, J. S., Van Rijswijk, P., Gao, Y., and Meysman, F. J. R.: The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study, Geochim. Cosmochim. Ac., 194, 211–232, https://doi.org/10.1016/j.gca.2016.08.038, 2016.

Vasquez-Cardenas, D., van de Vossenberg, J., Polerecky, L., Malkin, S. Y., Schauer, R., Hidalgo-Martinez, S., Confurius, V., Middelburg, J. J., Meysman, F. J. R., and Boschker, H. T. S.: Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments, ISME J., 9, 1966–1978, https://doi.org/10.1038/ismej.2015.10, 2015.

Westeijn, L. P. M. J.: Grevelingenmeer: meer kwetsbaar? Een beschrijving van de ecologische ontwikkelingen voor de periode 1999 t/m 2008–2010 in vergelijking met de periode 1990 t/m 1998, RWS Waterdienst, Lelystad, 2011.

Widdows, J. and Navarro, J. M.: Influence of current speed on clearance rate, algal cell depletion in the water column and resuspension of biodeposits of cockles (Cerastoderma edule), J. Exp. Mar. Biol. Ecol., 343, 44–51, https://doi.org/10.1016/j.jembe.2006.11.011, 2007.