Locally convex spaces with the strong Gelfand–Phillips property

Тарас Банах1,2, Saak Gabriyelyan3
1Ivan Franko National University, Lviv, Ukraine
2Jan Kochanowski University, Kielce, Poland
3Ben Gurion University of the Negev, Beer Sheva, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)

Banakh, T., Gabriyelyan, S.: $$b$$-Feral locally convex spaces (Preprint)

Banakh, T., Gabriyelyan, S.: The Gelfand–Phillips property for locally convex spaces (Under review)

Banakh, T., Gabriyelyan, S.: The Josefson–Nissenzweig property for locally convex spaces. Filomat (accepted)

Banakh, T., Gabriyelyan, S.: Banach spaces with the (strong) Gelfand–Phillips property. Banach J. Math. Anal. 45, Paper No. 24, 14 pp (2022)

Banakh, T., Gabriyelyan, S., Protasov, I.: On uniformly discrete subsets in uniform spaces and topological groups. Mat. Stud. (1) 45, 76–97 (2016)

Bessaga, C., Pełczyński, A.: Spaces of continuous functions, IV. Stud. Math. 19, 53–62 (1960)

Bonet, J., Lindström, M., Valdivia, M.: Two theorems of Josefson–Nissenzweig type for Fréchet spaces. Proc. Am. Math. Soc. 117, 363–364 (1993)

Castillo, J.M.F., González, M., Papini, P.L.: On weak$$^\ast $$-extensible Banach spaces. Nonlinear Anal. 75, 4936–4941 (2012)

Corson, H.: The weak topology of a Banach space. Trans. Am. Math. Soc. 101, 1–15 (1961)

Dales, H.G., Dashiell, F.K., Jr., Lau, A.T.-M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Berlin (2016)

Drewnowski, L.: On Banach spaces with the Gelfand–Phillips property. Math. Z. 193, 405–411 (1986)

Drewnowski, L., Emmanuele, G.: On Banach spaces with the Gelfand–Phillips property, II. Rend. Circ. Mat. Palermo 38, 377–391 (1989)

Edgar, G.A., Wheeler, R.F.: Topological properties of Banach spaces. Pac. J. Math. 115, 317–350 (1984)

Engleking, R.: General Topology. Heldermann Verlag, Berlin (1989)

Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York (2010)

Ghenciu, I., Lewis, P.: The Dunford-Pettis property and the Gelfand-Phillips property, and $$L$$-sets. Colloq. Math. 106, 311–324 (2006)

Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

Josefson, B.: A Gelfand-Phillips space not containing $$\ell _1$$ whose dual ball is not weak$$^\ast $$ sequentially compact. Glasg. Math. J. 43, 125–128 (2001)

Ka̧kol, J., Kubiś, W., López-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics. Springer, Berlin (2011)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces. Springer, Berlin (1977)

Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. CRC Press, New York (2011)

Phillips, R.S.: On linear transformations. Trans. Am. math. Soc. 48, 516–541 (1940)

Schlumprecht, T.: Limited sets in Banach spaces. Dissertation, Univ. Munich (1987)

Schlumprecht, T.: Limited sets in $$C(K)$$-spaces and examples concerning the Gelfand–Phillips property. Math. Nachr. 157, 51–64 (1992)

Schmets, J.: Espaces de fonctions Continues. Lecture Notes in Math, vol. 519. Springer, Berlin (1976)