Locally convex spaces with the strong Gelfand–Phillips property
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)
Banakh, T., Gabriyelyan, S.: $$b$$-Feral locally convex spaces (Preprint)
Banakh, T., Gabriyelyan, S.: The Gelfand–Phillips property for locally convex spaces (Under review)
Banakh, T., Gabriyelyan, S.: The Josefson–Nissenzweig property for locally convex spaces. Filomat (accepted)
Banakh, T., Gabriyelyan, S.: Banach spaces with the (strong) Gelfand–Phillips property. Banach J. Math. Anal. 45, Paper No. 24, 14 pp (2022)
Banakh, T., Gabriyelyan, S., Protasov, I.: On uniformly discrete subsets in uniform spaces and topological groups. Mat. Stud. (1) 45, 76–97 (2016)
Bonet, J., Lindström, M., Valdivia, M.: Two theorems of Josefson–Nissenzweig type for Fréchet spaces. Proc. Am. Math. Soc. 117, 363–364 (1993)
Castillo, J.M.F., González, M., Papini, P.L.: On weak$$^\ast $$-extensible Banach spaces. Nonlinear Anal. 75, 4936–4941 (2012)
Dales, H.G., Dashiell, F.K., Jr., Lau, A.T.-M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Berlin (2016)
Drewnowski, L., Emmanuele, G.: On Banach spaces with the Gelfand–Phillips property, II. Rend. Circ. Mat. Palermo 38, 377–391 (1989)
Edgar, G.A., Wheeler, R.F.: Topological properties of Banach spaces. Pac. J. Math. 115, 317–350 (1984)
Engleking, R.: General Topology. Heldermann Verlag, Berlin (1989)
Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York (2010)
Ghenciu, I., Lewis, P.: The Dunford-Pettis property and the Gelfand-Phillips property, and $$L$$-sets. Colloq. Math. 106, 311–324 (2006)
Josefson, B.: A Gelfand-Phillips space not containing $$\ell _1$$ whose dual ball is not weak$$^\ast $$ sequentially compact. Glasg. Math. J. 43, 125–128 (2001)
Ka̧kol, J., Kubiś, W., López-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics. Springer, Berlin (2011)
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces. Springer, Berlin (1977)
Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. CRC Press, New York (2011)
Schlumprecht, T.: Limited sets in Banach spaces. Dissertation, Univ. Munich (1987)
Schlumprecht, T.: Limited sets in $$C(K)$$-spaces and examples concerning the Gelfand–Phillips property. Math. Nachr. 157, 51–64 (1992)