Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các Phương Pháp Galerkin Gián Đoạn Địa Phương Không Lý Tưởng cho Các Phương Trình MHD
Tóm tắt
Trong bài báo này, chúng tôi tiếp tục nghiên cứu phương pháp Galerkin gián đoạn địa phương không lý tưởng, ban đầu được phát triển cho các phương trình Maxwell tuyến tính (J. Comput. Phys. 194 588–610 (2004)), để giải các phương trình magnetohydrodynamics (MHD) phi tuyến tính. Đặc điểm nổi bật của phương pháp này là việc sử dụng các nghiệm gần đúng mà hoàn toàn không phân kỳ bên trong mỗi đối tượng đối với trường từ. Do đó, phương pháp này có chi phí tính toán thấp hơn so với phương pháp Galerkin gián đoạn truyền thống với các không gian đa thức từng khúc chuẩn. Chúng tôi xây dựng phương pháp Galerkin gián đoạn địa phương không phân kỳ cho các phương trình MHD và thực hiện các thí nghiệm số rộng rãi theo chiều một chiều và hai chiều cho cả các nghiệm mượt mà và các nghiệm có sự gián đoạn. Kết quả tính toán của chúng tôi cho thấy rằng phương pháp Galerkin gián đoạn địa phương không phân kỳ, với chi phí giảm so với phương pháp Galerkin gián đoạn truyền thống, có thể duy trì độ chính xác tương đương cho các nghiệm mượt mà và có thể nâng cao tính ổn định số của sơ đồ cũng như giảm bớt một số đặc điểm không vật lý trong một số trường hợp kiểm tra.
Từ khóa
#phương pháp Galerkin #magnetohydrodynamics #phương trình phi tuyến #ổn định số #tính toánTài liệu tham khảo
N. Aslan T. Kammash (1997) ArticleTitleDeveloping numerical fluxes with new sonic fix for MHD equations J.Comput.Phys. 133 43–55 Occurrence Handle10.1006/jcph.1997.5644
G.A. Baker W.N. Jureidini O.A. Karakashian (1990) ArticleTitlePiecewise solenoidal vector fields and the Stokes problem SIAMJ.Numer.Anal. 27 1466–1485 Occurrence Handle10.1137/0727085
D. S. Balsara (2001) ArticleTitleDivergence-free adaptive mesh refinement for magnetohydrodynamics J.Comput.Phys. 174 614–648 Occurrence Handle10.1006/jcph.2001.6917
D.S. Balsara (2004) ArticleTitleSecond order accurate schemes for magnetohydrodynamics with divergence-free reconstruction Astrophys.J.Suppl.Ser. 151 149–184 Occurrence Handle10.1086/381377
D.S. Balsara D.S. Spicer (1999) ArticleTitleA staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations J.Comput.Phys. 149 270–292 Occurrence Handle10.1006/jcph.1998.6153
J.U. Brackbill D.C. Barnes (1980) ArticleTitleThe effect of nonzero ∇.B B on the numerical solution of the magnetohydrodynamic equations J.Comput.Phys. 35 426–430 Occurrence Handle10.1016/0021-9991(80)90079-0
S.H. Brecht J.G. Lyon J.A. Fedder K. Hain (1981) ArticleTitleA simulation study of east-west IMF effects on the magnetosphere Geophys.Res.Lett. 8 397–400
M. Brio C.C. Wu (1988) ArticleTitleAn upwind differencing scheme for the equations of ideal magnetohydrodynamics J.Comput.Phys. 75 400–422 Occurrence Handle10.1016/0021-9991(88)90120-9
B Cockburn S Hou CW Shu (1990) ArticleTitleThe Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case Math.Comput 54 545–581
B Cockburn SY Lin CW Shu (1989) ArticleTitleTVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems J.Comput.Phys 84 90–113 Occurrence Handle10.1016/0021-9991(89)90183-6
B. Cockburn F. Li C.-W. Shu (2004) ArticleTitleLocally divergence-free discontinuous Galerkin methods for the Maxwell equations J.Comput.Phys. 194 588–610 Occurrence Handle10.1016/j.jcp.2003.09.007
B Cockburn CW Shu (1988) ArticleTitleThe Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems J.Comput.Phys 141 199–224 Occurrence Handle10.1006/jcph.1998.5892
B Cockburn CW Shu (2001) ArticleTitleRunge–Kutta Discontinuous Galerkin methods for convection-dominated problems J.Sci.Comput 16 173 Occurrence Handle10.1023/A:1012873910884
W. Dai P.R. Woodward (1998) ArticleTitleA simple finite difference scheme for multidimensional magnetohydrodynamic equations J.Comput.Phys. 142 331–369 Occurrence Handle10.1006/jcph.1998.5944 Occurrence HandleMR1624220
A. Dedner F. Kemm D. Kröner C.-D. Munz T. Schnitner M. Wesenberg (2002) ArticleTitleHyperbolic divergence cleaning for the MHD equations J.Comput.Phys. 175 645–673 Occurrence Handle10.1006/jcph.2001.6961
C.R. Evans J.F. Hawley (1988) ArticleTitleSimulation of magnetohydrodynamic flows: A constrained transport method Astrophys.J. 332 659–677 Occurrence Handle10.1086/166684
B.-N. Jiang J. Wu L.A Povinelli (1996) ArticleTitleThe origin of spurious solutions in computational electromagnetics J.Comput.Phys. 125 104–123 Occurrence Handle10.1006/jcph.1996.0082
G.-S. Jiang C.-C. Wu (1999) ArticleTitleA high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics J.Comput.Phys. 150 561–594 Occurrence Handle10.1006/jcph.1999.6207
OA Karakashian WN Jureidini (1998) ArticleTitleA nonconforming finite element method for the stationary Navier–Stokes equations SIAM J.Numer.Anal 35 93–120 Occurrence Handle10.1137/S0036142996297199
C.-D. Munz P. Omnes R. Schneider E. Sonnendrücker U. Voβ (2000) ArticleTitleDivergence correction techniques for Maxwell solvers based on a hyperbolic model J. Comput. Phys. 161 484–511 Occurrence Handle10.1006/jcph.2000.6507
S.A Orszag CM Tang (1979) ArticleTitleSmall-scale structure of two-dimensional magnetohydrodynamic turbulence J. Fluid. Mech. 90 129–143
Powell K. G. (1994). An Approximate Riemann solver for Magnetohydrodynamics (that works in more than one dimension), ICASE report No. 94–24, Langley, VA.
Qiu, J., and Shu, C.-W. Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput., to appear.
J Qiu CW Shu (2003) ArticleTitleHermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One dimensional case J. Comput. Phys 193 115–135 Occurrence Handle10.1016/j.jcp.2003.07.026
D. Ryu F. Miniati T. W. Jones A. Frank (1998) ArticleTitleA divergence-free upwind code for multi-dimensional magnetohydrodynamic flows Astrophys. J. 509 244–255 Occurrence Handle10.1086/306481
C.-W. Shu (1987) ArticleTitleTVB uniformly high-order schemes for conservation laws Math. Comput. 49 105–121
C.-W. Shu (1998) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws B Cockburn C Johnson CW Shu E Tadmor A Quarteroni (Eds) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics Springer Berlin 325–432
C.-W. Shu S. Osher (1988) ArticleTitleEfficient implementation of essentially non-oscillatory shock-capturing schemes J. Comput. Phys. 77 439–471 Occurrence Handle10.1016/0021-9991(88)90177-5
J. M. Stone M. L. Norman (1992) ArticleTitleZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions II The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 80 791–818
G. Tóth (2000) ArticleTitleThe ∇. B B = 0 constraint in shock-capturing magnetohydrodynamics codes J. Comput. Phys. 161 605–652 Occurrence Handle10.1006/jcph.2000.6519
CC Wu (1986) ArticleTitleAn Kelvin–Helmholtz instability at the magnetopause boundary J. Geophys. Res 91 3042–3060
KS Yee (1966) ArticleTitleNumerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media IEEE Trans. on Antenna Propagation AP-14 302–307