Phân phối cục bộ yếu tố thúc đẩy thần kinh có nguồn gốc từ não từ các vi cầu PLGA thúc đẩy tái tạo thần kinh ngoại biên ở chuột

Shi Z1, Zhiyong Fan1, Hua Zhang1, Shentai Li1, He Yuan1, Jiu-hui Tong1
1Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China

Tóm tắt

Tóm tắt Nền tảng Sửa chữa khuyết tật thần kinh ngoại biên là một thách thức đáng kể đối với các bác sĩ phẫu thuật tái tạo. Mục tiêu của nghiên cứu này là phát triển yếu tố thúc đẩy thần kinh có nguồn gốc từ não (BDNF) từ các vi cầu poly(D,L-lactide-co-glycolide) (PLGA) để điều trị khuyết tật thần kinh ngoại biên. Phương pháp Các vi cầu BDNF được chuẩn bị bằng phương pháp nhũ tương dầu trong nước và bay hơi dung môi. Hình thái, kích thước hạt, hiệu suất bao bọc, khả năng tải thuốc và hiệu suất phóng thích kéo dài của các vi cầu đã được quan sát và tính toán. Các tế bào gốc trung mô mỡ (ADSCs) được tách ra và mở rộng. ADSCs được chia thành bốn nhóm: nhóm đối chứng, nhóm BDNF, nhóm vi cầu trống và nhóm vi cầu BDNF. Các thử nghiệm xét nghiệm số lượng tế bào-8 (CCK-8) được sử dụng để đánh giá sự phát triển tế bào. Sự di cư tế bào được xác định bằng các xét nghiệm Transwell. Hai mươi tám con chuột đực Sprague-Dawley bị thực hiện mô hình tổn thương cắt đứt ở dây thần kinh ngồi bên phải. Tỷ lệ trọng lượng ướt của cơ sinh đôi được tính toán bằng cách so sánh trọng lượng của cơ sinh đôi từ bên phẫu thuật với bên bình thường. Kiểm tra điện sinh lý thần kinh được thực hiện để đánh giá phục hồi chức năng thần kinh. Sự tái tạo thần kinh được đánh giá bằng phân tích mô học và nhuộm miễn dịch mô học. Kết quả Các vi cầu có hình cầu và kích thước đồng đều (46.38 ± 1.00 μm), hiệu suất bao bọc cao và khả năng tải thuốc cao. Các nghiên cứu phóng thích trong ống nghiệm cho thấy các vi cầu chứa BDNF có đặc tính phóng thích kéo dài tốt. Thời gian phóng thích BDNF kéo dài hơn 50 ngày. BDNF hoặc vi cầu BDNF thúc đẩy sự phát triển và di cư của ADSCs nhiều hơn nhóm đối chứng (P < 0.05). So với nhóm đối chứng, BDNF làm giảm đáng kể tốc độ dẫn truyền thần kinh (NCV) và biên độ hợp thành (AMP) (P < 0.05). Các sợi thần kinh trong nhóm vi cầu BDNF được sắp xếp khít và phân bố đồng đều hơn nhóm đối chứng. Kết luận Vi cầu phóng thích kéo dài BDNF/PLGA có thể thúc đẩy sự di cư của ADSCs và thúc đẩy sự phân hóa thần kinh của ADSCs. Hơn nữa, vi cầu phóng thích kéo dài BDNF/PLGA cải thiện tốc độ dẫn truyền thần kinh và ngăn ngừa teo cơ do thần kinh.

Từ khóa


Tài liệu tham khảo

Hu M, Xiao H, Niu Y, et al. Long-term follow-up of the repair of the multiple-branch facial nerve defect using acellular nerve allograft. J Oral Maxillofac Surg. 2016;74(218):e211-211. https://doi.org/10.1016/j.joms.2015.08.005.

Yang XN, Jin YQ, Bi H, et al. Peripheral nerve repair with epimysium conduit. Biomaterials. 2013;34:5606–16. https://doi.org/10.1016/j.biomaterials.2013.04.018.

Bin Z, Zhihu Z, Jianxiong M, et al. Repairing peripheral nerve defects with revascularized tissue-engineered nerve based on a vascular endothelial growth factor-heparin sustained release system. J Tissue Eng Regen Med. 2020;14:819–28. https://doi.org/10.1002/term.3048.

Wei AL, Liu SQ, Tao HY, et al. Repairing peripheral nerve defects with tissue engineered artificial nerves in rats. Chin J Traumatol. 2008;11:28–33. https://doi.org/10.1016/s1008-1275(08)60006-1.

Yang M, Rawson JL, Zhang EW, et al. Comparisons of outcomes from repair of median nerve and ulnar nerve defect with nerve graft and tubulization: a meta-analysis. J Reconstr Microsurg. 2011;27:451–60. https://doi.org/10.1055/s-0031-1281526.

Rao F, Wang Y, Zhang D, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020;10:1590–603. https://doi.org/10.7150/thno.36272.

Zhang Q, Wu P, Chen F, et al. Brain derived neurotrophic factor and glial cell line-derived neurotrophic factor-transfected bone mesenchymal stem cells for the repair of periphery nerve injury. Front Bioeng Biotechnol. 2020;8:874. https://doi.org/10.3389/fbioe.2020.00874.

Hultman R, Kumari U, Michel N, et al. Gαz regulates BDNF-induction of axon growth in cortical neurons. Mol Cell Neurosci. 2014;58:53–61. https://doi.org/10.1016/j.mcn.2013.12.004.

Lu C, Wang Y, Yang S. Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater Sci Eng. 2018;4:2994–3005. https://doi.org/10.1021/acsbiomaterials.8b00536.

Zhang Y, Zhang H, Zhang G, et al. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone. Neural Regen Res. 2014;9:1814–9. https://doi.org/10.4103/1673-5374.143427.

Habraken WJ, Wolke JG, Mikos AG, et al. Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed. 2006;17:1057–74. https://doi.org/10.1163/156856206778366004.

Kohno M, Andhariya JV, Wan B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm. 2020;582: 119339. https://doi.org/10.1016/j.ijpharm.2020.119339.

Wang T, Zhang C, Zhong W, et al. Modification of three-phase drug release mode of octreotide PLGA microspheres by microsphere-gel composite system. AAPS PharmSciTech. 2019;20:228. https://doi.org/10.1208/s12249-019-1438-4.

Han Y, Li H. Comparison between intra-articular injection of infrapatellar fat pad (IPFP) cell concentrates and IPFP-mesenchymal stem cells (MSCs) for cartilage defect repair of the knee joint in rabbits. Stem Cells Int. 2021;2021:9966966. https://doi.org/10.1155/2021/9966966.

Saffari TM, Mathot F, Friedrich PF, et al. Revascularization patterns of nerve allografts in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg. 2020;73:460–8. https://doi.org/10.1016/j.bjps.2019.11.048.

Wang Z, Wang J, Qin L, et al. Tongluo Zhitong prescription alleviates allodynia, hyperalgesia, and dyskinesia in the chronic constriction injury model of rats. Evid Based Complement Alternat Med. 2017;2017:8197281. https://doi.org/10.1155/2017/8197281.

Zhao ZH, Ma XL, Zhao B, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif. 2021;54:e13043. https://doi.org/10.1111/cpr.13043.

Stefani RM, Lee AJ, Tan AR, et al. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 2020;102:326–40. https://doi.org/10.1016/j.actbio.2019.11.052.

Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34. https://doi.org/10.1016/j.jconrel.2019.05.003.

Liu H, Shi S, Cao J, et al. Preparation and evaluation of a novel bioactive glass/lysozyme/PLGA composite microsphere. Drug Dev Ind Pharm. 2015;41:458–63. https://doi.org/10.3109/03639045.2013.877485.

Su H, Xu F, Sun H, et al. Preparation and evaluation of BDNF composite conduits for regeneration of sciatic nerve defect in rats. J Pharm Sci. 2020;109:2189–95. https://doi.org/10.1016/j.xphs.2020.03.027.

Huang J, Lu L, Zhang J, et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS ONE. 2012;7:e39526. https://doi.org/10.1371/journal.pone.0039526.

Zhao Y, Zhao X, Zhang R, et al. Cartilage extracellular matrix scaffold with Kartogenin-encapsulated PLGA microspheres for cartilage regeneration. Front Bioeng Biotechnol. 2020;8:600103. https://doi.org/10.3389/fbioe.2020.600103.

Wang J, Yang Q, Cheng N, et al. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Mater Sci Eng C Mater Biol Appl. 2016;61:705–11. https://doi.org/10.1016/j.msec.2015.12.097.

Park JS, Park K, Woo DG, et al. PLGA microsphere construct coated with TGF-beta 3 loaded nanoparticles for neocartilage formation. Biomacromology. 2008;9:2162–9. https://doi.org/10.1021/bm800251x.

Goto N, Okazaki K, Akasaki Y, et al. Single intra-articular injection of fluvastatin-PLGA microspheres reduces cartilage degradation in rabbits with experimental osteoarthritis. J Orthop Res. 2017;35:2465–75. https://doi.org/10.1002/jor.23562.

Tan H, Wu J, Lao L, et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 2009;5:328–37. https://doi.org/10.1016/j.actbio.2008.07.030.

Ko JY, Choi YJ, Jeong GJ, et al. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials. 2013;34:5359–68. https://doi.org/10.1016/j.biomaterials.2013.03.066.

Qu M, Liao X, Jiang N, et al. Injectable open-porous PLGA microspheres as cell carriers for cartilage regeneration. J Biomed Mater Res A. 2021. https://doi.org/10.1002/jbm.a.37196.

Yang Z, Liu L, Su L, et al. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int J Pharm. 2020;575:119006. https://doi.org/10.1016/j.ijpharm.2019.119006.

Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J Microencapsul. 2005;22:705–14. https://doi.org/10.1080/02652040500162196.

Cao M, Niu Q, Xiang X, et al. Brain-derived neurotrophic factor regulates Ishikawa cell proliferation through the TrkB-ERK1/2 signaling pathway. Biomolecules. 2020. https://doi.org/10.3390/biom10121645.

Dasari VR, Spomar DG, Gondi CS, et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007;24:391–410. https://doi.org/10.1089/neu.2006.0142.

Zhang ZY, Yang J, Fan ZH, et al. Fresh human amniotic membrane effectively promotes the repair of injured common peroneal nerve. Neural Regen Res. 2019;14:2199–208. https://doi.org/10.4103/1673-5374.262596.

Zhang Z, Hu P, Wang Z, et al. BDNF promoted osteoblast migration and fracture healing by up-regulating integrin β1 via TrkB-mediated ERK1/2 and AKT signalling. J Cell Mol Med. 2020;24:10792–802. https://doi.org/10.1111/jcmm.15704.

Borghesani PR, Peyrin JM, Klein R, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129:1435–42.

Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. Expert Rev Ophthalmol. 2017;12:69–81. https://doi.org/10.1080/17469899.2017.1259566.

Choi J, Kim DS, Kim J, et al. Better nerve regeneration with distally based fascicular turnover flap than with conventional autologous nerve graft in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg. 2020;73:214–21. https://doi.org/10.1016/j.bjps.2019.09.031.

Passipieri JA, Dienes J, Frank J, et al. Adipose stem cells enhance nerve regeneration and muscle function in a peroneal nerve ablation model. Tissue Eng A. 2021;27:297–310. https://doi.org/10.1089/ten.TEA.2018.0244.

Triolo D, Dina G, Lorenzetti I, et al. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J Cell Sci. 2006;119:3981–93. https://doi.org/10.1242/jcs.03168.

DiCostanzo NR, Crowder NA, Kamermans BA, et al. Retinal and optic nerve integrity following monocular inactivation for the treatment of amblyopia. Front Syst Neurosci. 2020;14:32. https://doi.org/10.3389/fnsys.2020.00032.

Lau H, Mat Ludin AF. Identification of neuroprotective factors associated with successful ageing and risk of cognitive impairment among malaysia older adults. Curr Gerontol Geriatr Res. 2017;2017:4218756. https://doi.org/10.1155/2017/4218756.

Zhang YR, Ka K, Zhang GC, et al. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells. Neural Regen Res. 2015;10:1498–506. https://doi.org/10.4103/1673-5374.165523.