Phân phối cục bộ yếu tố thúc đẩy thần kinh có nguồn gốc từ não từ các vi cầu PLGA thúc đẩy tái tạo thần kinh ngoại biên ở chuột
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hu M, Xiao H, Niu Y, et al. Long-term follow-up of the repair of the multiple-branch facial nerve defect using acellular nerve allograft. J Oral Maxillofac Surg. 2016;74(218):e211-211. https://doi.org/10.1016/j.joms.2015.08.005.
Yang XN, Jin YQ, Bi H, et al. Peripheral nerve repair with epimysium conduit. Biomaterials. 2013;34:5606–16. https://doi.org/10.1016/j.biomaterials.2013.04.018.
Bin Z, Zhihu Z, Jianxiong M, et al. Repairing peripheral nerve defects with revascularized tissue-engineered nerve based on a vascular endothelial growth factor-heparin sustained release system. J Tissue Eng Regen Med. 2020;14:819–28. https://doi.org/10.1002/term.3048.
Wei AL, Liu SQ, Tao HY, et al. Repairing peripheral nerve defects with tissue engineered artificial nerves in rats. Chin J Traumatol. 2008;11:28–33. https://doi.org/10.1016/s1008-1275(08)60006-1.
Yang M, Rawson JL, Zhang EW, et al. Comparisons of outcomes from repair of median nerve and ulnar nerve defect with nerve graft and tubulization: a meta-analysis. J Reconstr Microsurg. 2011;27:451–60. https://doi.org/10.1055/s-0031-1281526.
Rao F, Wang Y, Zhang D, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020;10:1590–603. https://doi.org/10.7150/thno.36272.
Zhang Q, Wu P, Chen F, et al. Brain derived neurotrophic factor and glial cell line-derived neurotrophic factor-transfected bone mesenchymal stem cells for the repair of periphery nerve injury. Front Bioeng Biotechnol. 2020;8:874. https://doi.org/10.3389/fbioe.2020.00874.
Hultman R, Kumari U, Michel N, et al. Gαz regulates BDNF-induction of axon growth in cortical neurons. Mol Cell Neurosci. 2014;58:53–61. https://doi.org/10.1016/j.mcn.2013.12.004.
Lu C, Wang Y, Yang S. Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater Sci Eng. 2018;4:2994–3005. https://doi.org/10.1021/acsbiomaterials.8b00536.
Zhang Y, Zhang H, Zhang G, et al. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone. Neural Regen Res. 2014;9:1814–9. https://doi.org/10.4103/1673-5374.143427.
Habraken WJ, Wolke JG, Mikos AG, et al. Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed. 2006;17:1057–74. https://doi.org/10.1163/156856206778366004.
Kohno M, Andhariya JV, Wan B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm. 2020;582: 119339. https://doi.org/10.1016/j.ijpharm.2020.119339.
Wang T, Zhang C, Zhong W, et al. Modification of three-phase drug release mode of octreotide PLGA microspheres by microsphere-gel composite system. AAPS PharmSciTech. 2019;20:228. https://doi.org/10.1208/s12249-019-1438-4.
Han Y, Li H. Comparison between intra-articular injection of infrapatellar fat pad (IPFP) cell concentrates and IPFP-mesenchymal stem cells (MSCs) for cartilage defect repair of the knee joint in rabbits. Stem Cells Int. 2021;2021:9966966. https://doi.org/10.1155/2021/9966966.
Saffari TM, Mathot F, Friedrich PF, et al. Revascularization patterns of nerve allografts in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg. 2020;73:460–8. https://doi.org/10.1016/j.bjps.2019.11.048.
Wang Z, Wang J, Qin L, et al. Tongluo Zhitong prescription alleviates allodynia, hyperalgesia, and dyskinesia in the chronic constriction injury model of rats. Evid Based Complement Alternat Med. 2017;2017:8197281. https://doi.org/10.1155/2017/8197281.
Zhao ZH, Ma XL, Zhao B, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif. 2021;54:e13043. https://doi.org/10.1111/cpr.13043.
Stefani RM, Lee AJ, Tan AR, et al. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 2020;102:326–40. https://doi.org/10.1016/j.actbio.2019.11.052.
Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34. https://doi.org/10.1016/j.jconrel.2019.05.003.
Liu H, Shi S, Cao J, et al. Preparation and evaluation of a novel bioactive glass/lysozyme/PLGA composite microsphere. Drug Dev Ind Pharm. 2015;41:458–63. https://doi.org/10.3109/03639045.2013.877485.
Su H, Xu F, Sun H, et al. Preparation and evaluation of BDNF composite conduits for regeneration of sciatic nerve defect in rats. J Pharm Sci. 2020;109:2189–95. https://doi.org/10.1016/j.xphs.2020.03.027.
Huang J, Lu L, Zhang J, et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS ONE. 2012;7:e39526. https://doi.org/10.1371/journal.pone.0039526.
Zhao Y, Zhao X, Zhang R, et al. Cartilage extracellular matrix scaffold with Kartogenin-encapsulated PLGA microspheres for cartilage regeneration. Front Bioeng Biotechnol. 2020;8:600103. https://doi.org/10.3389/fbioe.2020.600103.
Wang J, Yang Q, Cheng N, et al. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Mater Sci Eng C Mater Biol Appl. 2016;61:705–11. https://doi.org/10.1016/j.msec.2015.12.097.
Park JS, Park K, Woo DG, et al. PLGA microsphere construct coated with TGF-beta 3 loaded nanoparticles for neocartilage formation. Biomacromology. 2008;9:2162–9. https://doi.org/10.1021/bm800251x.
Goto N, Okazaki K, Akasaki Y, et al. Single intra-articular injection of fluvastatin-PLGA microspheres reduces cartilage degradation in rabbits with experimental osteoarthritis. J Orthop Res. 2017;35:2465–75. https://doi.org/10.1002/jor.23562.
Tan H, Wu J, Lao L, et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 2009;5:328–37. https://doi.org/10.1016/j.actbio.2008.07.030.
Ko JY, Choi YJ, Jeong GJ, et al. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials. 2013;34:5359–68. https://doi.org/10.1016/j.biomaterials.2013.03.066.
Qu M, Liao X, Jiang N, et al. Injectable open-porous PLGA microspheres as cell carriers for cartilage regeneration. J Biomed Mater Res A. 2021. https://doi.org/10.1002/jbm.a.37196.
Yang Z, Liu L, Su L, et al. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int J Pharm. 2020;575:119006. https://doi.org/10.1016/j.ijpharm.2019.119006.
Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J Microencapsul. 2005;22:705–14. https://doi.org/10.1080/02652040500162196.
Cao M, Niu Q, Xiang X, et al. Brain-derived neurotrophic factor regulates Ishikawa cell proliferation through the TrkB-ERK1/2 signaling pathway. Biomolecules. 2020. https://doi.org/10.3390/biom10121645.
Dasari VR, Spomar DG, Gondi CS, et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007;24:391–410. https://doi.org/10.1089/neu.2006.0142.
Zhang ZY, Yang J, Fan ZH, et al. Fresh human amniotic membrane effectively promotes the repair of injured common peroneal nerve. Neural Regen Res. 2019;14:2199–208. https://doi.org/10.4103/1673-5374.262596.
Zhang Z, Hu P, Wang Z, et al. BDNF promoted osteoblast migration and fracture healing by up-regulating integrin β1 via TrkB-mediated ERK1/2 and AKT signalling. J Cell Mol Med. 2020;24:10792–802. https://doi.org/10.1111/jcmm.15704.
Borghesani PR, Peyrin JM, Klein R, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129:1435–42.
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. Expert Rev Ophthalmol. 2017;12:69–81. https://doi.org/10.1080/17469899.2017.1259566.
Choi J, Kim DS, Kim J, et al. Better nerve regeneration with distally based fascicular turnover flap than with conventional autologous nerve graft in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg. 2020;73:214–21. https://doi.org/10.1016/j.bjps.2019.09.031.
Passipieri JA, Dienes J, Frank J, et al. Adipose stem cells enhance nerve regeneration and muscle function in a peroneal nerve ablation model. Tissue Eng A. 2021;27:297–310. https://doi.org/10.1089/ten.TEA.2018.0244.
Triolo D, Dina G, Lorenzetti I, et al. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J Cell Sci. 2006;119:3981–93. https://doi.org/10.1242/jcs.03168.
DiCostanzo NR, Crowder NA, Kamermans BA, et al. Retinal and optic nerve integrity following monocular inactivation for the treatment of amblyopia. Front Syst Neurosci. 2020;14:32. https://doi.org/10.3389/fnsys.2020.00032.
Lau H, Mat Ludin AF. Identification of neuroprotective factors associated with successful ageing and risk of cognitive impairment among malaysia older adults. Curr Gerontol Geriatr Res. 2017;2017:4218756. https://doi.org/10.1155/2017/4218756.