Localization Properties of Chern Insulators

Arnold Mathematical Journal - Tập 5 - Trang 15-21 - 2019
Roman Bezrukavnikov1, Anton Kapustin2
1Massachusetts Institute of Technology, Cambridge, USA
2California Institute of Technology, Pasadena, USA

Tóm tắt

We study the localization properties of the equal-time electron Green’s function in a Chern insulator in an arbitrary dimension and with an arbitrary number of bands. We prove that the Green’s function cannot decay super-exponentially if the Hamiltonian is finite-range and the quantum Hall response is nonzero. For a general band Hamiltonian (possibly infinite-range), we prove that the Green’s function cannot be finite-range if the quantum Hall response is nonzero. The proofs use methods of algebraic geometry.

Tài liệu tham khảo

Bernevig, B.A., Hughes, T.L.: Topological Insulators and Topological Superconductors. Princeton University Press, Princeton (2013) Fidkowski, L., Kapustin, A.: Local commuting projector hamiltonians and the quantum hall effect (2018). arXiv:1810.07756 [cond-mat.str-el] Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. Springer, Berlin (2011) Grauert, H.: Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133, 450–472 (1957) Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263–273 (1958) Gubeladze, I.: The Anderson conjecture and projective modules over monoid algebras. Soobshch. Akad. Nauk Gruzin. SSR 125, 289–291 (1987) Haldane, F.D.M.: Phys. Rev. Lett. 61, 2015 (1988) Lam, T.Y.: Serre’s Problem on Projective Modules. Springer, Berlin (2006) Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976) Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971) Suslin, A.A.: Projective modules over a polynomial ring are free. Dokl. Akad. Nauk. S.S.S.R. 229, 1063–1066 (1976) Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)