Local well-posedness of the inertial Qian–Sheng’s Q-tensor dynamical model near uniaxial equilibrium

Springer Science and Business Media LLC - Tập 2021 - Trang 1-15 - 2021
Xiaoyuan Wang1, Sirui Li1,2, Tingting Wang1
1School of Mathematics and Statistics, Guizhou University, Guiyang, China
2School of Mathematical Sciences, Zhejiang University, Hangzhou, China

Tóm tắt

We consider the inertial Qian–Sheng’s Q-tensor dynamical model for the nematic liquid crystal flow, which can be viewed as a system coupling the hyperbolic-type equations for the Q-tensor parameter with the incompressible Navier–Stokes equations for the fluid velocity. We prove the existence and uniqueness of local in time strong solutions to the system with the initial data near uniaxial equilibrium. The proof is mainly based on the classical Friedrich method to construct approximate solutions and the closed energy estimate.

Tài liệu tham khảo

Abels, H., Dolzmann, G., Liu, Y.: Well-posedness of a fully-coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 46, 3050–3077 (2014) Abels, H., Dolzmann, G., Liu, Y.: Strong solutions for the Beris–Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions. Adv. Differ. Equ. 21, 109–152 (2016) Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems with Internal Microstructure. Oxford Engrg. Sci. Ser., vol. 36. Oxford University Press, Oxford (1994) De Anna, F., Zarnescu, A.: Global well-posedness and twist-wave solutions for the inertial Qian–Sheng model of liquid crystals. J. Differ. Equ. 264, 1080–1118 (2018) De Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1974) Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: On a hyperbolic system arising in liquid crystals modeling. J. Hyperbolic Differ. Equ. 15, 15–35 (2018) Han, J., Luo, Y., Wang, W., Zhang, P., Zhang, Z.: From microscopic theory to macroscopic theory: systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215, 741–809 (2015) Huang, J., Ding, S.: Global well-posedness for the dynamical Q-tensor model of liquid crystals. Sci. China Math. 58, 1349–1366 (2015) Li, S., Wang, W.: Rigorous justification of the uniaxial limit from the Qian–Sheng inertial Q-tensor theory to the Ericksen–Leslie theory. SIAM J. Math. Anal. 52, 4421–4468 (2020) Li, S.-R., Wang, W., Zhang, P.: Local well-posedness and small Deborah limit of a molecule-based Q-tensor system. Discrete Contin. Dyn. Syst., Ser. B 20, 2611–2655 (2015) Liu, Y., Wang, W.: On the initial boundary value problem of a Navier–Stokes/Q-tensor model for liquid crystals. Discrete Contin. Dyn. Syst., Ser. B 23, 3879–3899 (2018) Majumdar, A.: Equilibrium order parameters of nematic liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21, 181–203 (2010) Mottram, N.J., Newton, C.: Introduction to Q-tensor theory (2014) arXiv:1409.3542 Paicu, M., Zarnescu, A.: Global existence and regularity for the full coupled Navier–Stokes and Q-tensor system. SIAM J. Math. Anal. 43, 2009–2049 (2011) Paicu, M., Zarnescu, A.: Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203, 45–67 (2012) Qian, T., Sheng, P.: Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 58, 7475–7485 (1998) Triebel, H.: Theory of Function Spaces. Monographs in Mathematics. Birkhäuser, Basel (1983) Wang, W., Zhang, P., Zhang, Z.: Well-posedness of the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 206, 953–995 (2012) Wang, W., Zhang, P., Zhang, Z.: Rigorous derivation from Landau–de Gennes theory to Ericksen–Leslie theory. SIAM J. Math. Anal. 47, 127–158 (2015)