Local and global behavior near homoclinic orbits

Journal of Statistical Physics - Tập 35 Số 5-6 - Trang 645-696 - 1984
Paul Glendinning1, Colin Sparrow2
1Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
2Department of pure mathematics and mathematical statistics, Cambridge, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. P. Sil'nikov, A Case of the Existence of a Denumerable Set of Periodic Motions,Sov. Math. Dokl. 6:163?166 (1965).

L. P. Sil'nikov, A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type,Math. USSR Sbornik 10:91?102 (1970).

A. Arneodo, P. Coullet, E. Speigel, and C. Tresser, Asymptotic Chaos, Preprint, Universite de Nice (1982).

J. Guckenheimer, Multiple Bifurcation Problems of Codimension Two, Preprint, U.C. Santa Cruz (1980).

J. Guckenheimer, On a Co-Dimension Two Bifurcation, inDynamical Systems and Turbulence: Warwick 1980, D. Rand and L.-S. Young, eds., Lecture Notes in Mathematics No. 898 (Springer-Verlag, Berlin, 1981).

P. Gaspard, Memoire de License, Universite de Bruxelles (1982).

A. Arneodo, P. Coullet, and C. Tresser, Possible New Strange Attractors with Spiral Structure,Commun. Math. Phys. 79:573?579 (1981).

G. R. Belitskii, Equivalence and Normal Forms of Germs of Smooth Mappings,Russ. Math. Surv. 33:107?177 (1978).

C. Tresser, thesis, Universite de Nice (1981).

H. W. Broer and G. Vegter, Subordinate Sil'nikov Bifurcations near Some Singularities of Vector Fields Having Low Codimension, Preprint ZW-8208, Rijksuniversitat, Groningen (1982).

J. A. Yorke and K. T. Alligood, Cascades of Period-Doubling Bifurcations: A Prerequisite for Horseshoes, Preprint, University of Maryland (1982).

P. Gaspard, Generation of a Countable Set of Homoclinic Flows Through Bifurcation,Phys. Lett. 97A:1?4 (1983).

S. P. Hastings, Single and Multiple Pulse Waves for the Fitzhugh-Nagumo Equations,SIAM J. Appl. Math. 42(2):247?260 (1982).

J. Evans, N. Fenichel, and J. A. Feroe, Double Impulse Solutions in Nerve Axon Equations,SIAM J. Appl. Math. 42(2):219?234 (1983).

J. A. Feroe, Existence and Stability of Multiple Impulse Solutions of a Nerve Axon Equation,SIAM J. Appl. Math. 42(2):235?246 (1983).

C. Sparrow,The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Appl. Math. Sci. No. 41 (Springer-Verlag, New York, 1982).

E. N. Lorenz, Deterministic Non-Periodic Flows,J. Atmos. Sci. 20:130?141 (1963).

R. Rössler, F. Gotz, and O. E. Rössler, Chaos in Endocrinology,Biophys. J. 25:216A (1979).

C. Sparrow, Chaos in a Three-Dimensional Single Loop Feedback System with a Piece-wise Linear Feedback Function,J. Math. Anal. Appl. 83:275?291 (1981).

O. E. Rössler, The Gluing Together Principle and Chaos, inNon-linear Problems of Analysis in Geometry and Mechanics, M. Atteia, D. Bancel, and I. Gumowski, eds. (Pitman, New York, 1981), pp. 50?56.

B. Uehleke, Chaos in einem stuckweise linearen System: Analytische Resultate, Ph.D. thesis, Tübingen (1982).

A. Arneodo, P. Coullet, and C. Tresser, Oscillators with Chaotic Behavior: An Illustration of a Theorem by Sil'nikov,J. Stat. Phys. 27:171?182 (1982).

O. E. Rössler, Continuous Chaos: Four Prototype Equations, inBifurcation Theory and Applications in Scientific Disciplines, O. Gurel and O. E. Rössler, eds., Proc. N.Y. Acad. Sci. No. 316, pp. 376?394 (1978).

E. Knobloch and N. O. Weiss, Bifurcations in a Model of Magnetoconvection,Physica 9D:379?407 (1983).

A. Bernoff, Preprint, University of Cambridge (1984).

E. Knobloch and N. O. Weiss, Bifurcations in a Model of Double-Diffusive Convection,Phys. Lett. 85A(3):127?130 (1981).

D. R. Moore, J. Toomre, E. Knobloch, and N. O. Weiss, Chaos in Thermosolutal Convection: Period Doubling for Partial Differential Equations,Nature 303: (1983).

P. Gaspard and G. Nicolis, What Can We Learn from Homoclinic Orbits in Chaotic Dynamics?J. Stat. Phys. 31:499?518 (1983).

P. Gaspard, R. Kapral, and G. Nicolis, Bifurcation Phenomena near Homoclinic Systems: A Two-Parameter Analysis, This Issue,J. Stat. Phys. 35:697 (1984).