Local Control of Large Primary Brain or Metastasis Treated by Leksell γ-Knife Stereotactic Radiosurgery: An Analysis of Dose-Volume Considerations, Local Control, and Complications

Journal of Radiosurgery - Tập 2 - Trang 141-152 - 1999
S. M. Ling1, D. Linzer1, J. Lu1, W. Raub1, H. Villalobos2, J. Ting1, X. Wu1, H. Landy3, A. Berti4, A. M. Markoe1
1Sylvester Comprehensive Cancer Center, Department of Radiation Oncology, University of Miami/Jackson Memorial Hospital, Miami
2Department of Neurosurgery, Mt. Sinai Hospital, New York
3Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, USA
4Columbia Cedars Hospital, Miami

Tóm tắt

Background: It has been shown that as the target volume of a given lesion treated by radiosurgery increases, there is a geometric increase in the amount of normal brain tissue that receives a significant radiotherapy dose. In order to limit toxicity to normal brain tissue as target volume increases, the dose prescribed to the target volume is lowered, decreasing the theoretical probability of local control. The purpose of this paper was to retrospectively review target volumes greater than 13.5 cc (corresponding to a spherical diameter of greater than 3 cm) in order to assess the local control as well as the complications associated with treating larger target volumes. Methods: The charts of 34 patients with target volumes greater than or equal to 13.5 cc who received treatment by Leksell γ-knife stereotactic radiosurgery (GK) for primary brain tumor or metastasis were reviewed retrospectively. These 34 patients were divided into three main groups based on histological subtype. These patients were treated between March 1994 and July 1996. Clinical and radiologic imaging follow-up data were correlated with radiosurgery volumes and doses. Results: At the time of the last follow-up done in August 1998, three patients had been lost to follow-up, 11 patients were still alive, and 20 patients had died. Eighteen of the patients who died and four of the patients still alive had failed locally. The median follow-up of the survivors was 31 months. Range of follow-up including patients who died was 0.5–48 months. Fifteen patients with primary high-grade gliomas (PHG) with a mean treatment dose of 14.5 Gy to the 45–50% isodose line (ISD) had a local control of 33% and an overall survival of 53% at 1 year after GK treatment. Nine patients with brain metastasis (Met) with a mean treatment dose of 15 Gy to the 45–50% ISD had a local control of 29% and an overall survival of 17% one year after GK treatment. Ten patients with meningiomas or schwannomas (M/S) with a lower mean dose of 12.8 Gy had a local control of 83% and 63% and overall survival of 90% and 72% at 1 and 2 years after GK treatment, respectively, with the median progression-free survival (PFS) and median overall survival (OS) not yet reached at the time of analysis. There was a 26% incidence of necrosis noted on radiologic imaging and an 8.5% incidence of related clinical symptomatology. Conclusions: Although we would prefer not to treat lesions greater than 4 cm in effective diameter (33 cc in volume) unless necessary, the incidence of related clinical symptomatology is not prohibitive based on the data from our patient population. In addition, patients with primary high-grade gliomas may benefit from higher doses, whereas for patients with meningiomas a lower dose may suffice. Patients with large metastasis do poorly and may not benefit from radiosurgery regardless of dose. Therefore, a critical limiting factor to be considered in treating “large” lesions with radiosurgery is not only volume, but also local control and eventual survival, which are dependent in large part on histology and individual patient prognostic factors.

Tài liệu tham khảo

Leksell L: The stereotaxis method and radiosurgery of the brain. Acta Chir Scan 102:316–319, 1951 Mehta MP: The physical, biologic and clinical basis of radiosurgery. Introduction and historical prospective. Curr Probl Cancer, Sept/Oct: 270–328, 1995 Kjellberg RN, Abe M: Stereotactic Bragg Peak proton beam therapy. In Modern Stereotactic Neurosurgery 1988, pp. 463–470 Kjellberg RN, Hanamura T, Davis KR, et al.: Bragg-peak proton beam therapy for arteriovenous malformations of the brain. New Engl J Med 309:269–274, 1983 Kjellberg RN: Isoeffective dose parameters for brain necrosis in relation to proton radiosurgical dosimetry. Stereotactic Cerebral Irradiation, Inserm Symposium No. 12, 1979 Berg NO, Lindgren M: Relation between field size and tolerance of rabbit's brain to roentgen irradiation via a slit-shaped field. Acta Radiol 1:147–168, 1963 Helenowski TK, Pothiawala B: Role of the gamma knife in the treatment of large lesions. Stereotact Funct Neurosurg 61(suppl 1):103–115, 1993 Jennelle RLS: Radiosurgical treatment of large targets. Braintrust 14–6, Dec 1996 Flickinger JC, Schell MC, Larson DA: Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148, 1990 Verhey LJ, Smith V: The physics of radiotherapy. Seminars in Radiation Oncology 5(3):175–191, 1995 Podgorsak EB, Pike GB, Oliver et al.: Radiosurgery with high energy photon beams: A comparison among techniques. Int J Radiat Oncol Biol Phys 16:857–865, 1989 Wu A, Lindner G, Maitz AH, et al.: Physics of gamma knife approach on convergent beams in sterotactic radiosurgery. Int J Radiat Oncol Biol Phys 18(4):941–949, 1990 Kaplan EL, Meier P: Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481, 1958 Kalbfleisch JD, Prentice RL: Chapter 1. In The Statistical Analysis of Failure Time Data. New York: Wiley, 1980, pp. 1–19 Mahmood S: Gamma knife radiosurgery and whole brain radiotherapy for brain metastasis. Poster presentation. 8th International Leksell Gamma Knife Society Meeting, Marseille, France, June 22–24, 1997 Mehta MP, Rozental JM, Levin AB, et al.: Defining the role of radiosurgery in the management of brain metastases. Int J Radiat Oncol Biol Phys 24:619–625, 1992 Kihlstrom L, Karlsson B, Lindquist C: Stereotact Funct Neurosurg 61(suppl 1):45–55, 1993 Flickinger JC, Kondiziolka D., Lunsford LD, et al.: A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 28(4):797–801, 1994 Shu H-KG, Sneed PK, Shiau C-Y, et al.: Factors influencing survival after gamma knife radiosurgery for patients with single and multiple brain metastases. Cancer J Sci Am 2:335–342, 1996 Shiau C-Y, Sneed PK, Shu H-KG, et al.: Radiosurgery for brain metastases: Relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 37(2):375–383, 1997 Nieder C, Berberich W, Nestle U, et al.: Relation between local result and total dose of radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys 33(2):349–355, 1995 Sause WT, Crowley JJ, Morantz R, et al.: Solitary brain metastasis: Results of an RTOG/SWOG protocol evaluating surgery + RT versus RT alone. Am J Clin Oncol 13(5):427–432, 1990 Auchter RM, Lamond JP, Alexander III E, et al.: A multi-institutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys 15(1):27–35, 1996 Patchell R: Brain metastases. Neurol Clin 9(4):817–823, November 1991 Noordijk EM, Vecht CJ, Haaxma-Reiche H, et al.: The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys 29(4):711–717, 1994 Smalley SR, Laws ER, O'Fallon JR, et al.: Resection for solitary brain metastasis. J Neurosurg 77:531–540, 1992 Mintz AH, Kestle J, Rathbone MP: A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 78:470–476, 1996 Nieder C, Niewald M, Schnabel K, et al.: Value of surgery and radiotherapy in the treatment of brain metastases. Radiat Oncol Invest 2:50–55, 1994 Chang CH, Horton J, Schoenfeld D, et al.: Comparison of post-operative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 52:997–1007, 1983 Salazar OM, Rubin P, Feldstein ML, et al.: High dose radiation therapy in the treatment of malignant gliomas: Final report. Int J Radiat Oncol Biol Phys 5:1733–1740, 1979 Leibel SA, Gutin PH, Wara WM, et al.: Survival and quality of life after interstitial implantation of removable high-activity iodine-125 sources for the treatment of patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 17:1129–1139, 1989 Prados MD, Gutin PH, Phillips TL: Highly anaplastic astrocytoma: A review of 357 patients treated between 1977 and 1989. Int J Radiat Oncol Biol Phys 23:3–8, 1992 Prados MD, Gutin PH, Phillips TL, et al.: Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: The UCSF experience. Int J Radiat Oncol Biol Phys 24:593–597, 1992 Scharfen CO, Sneed PK, Wara WM, et al.: High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 24:583–585, 1992 Sneed PK, McDermott MW, Gutin PH: Interstitial brachytherapy procedures for brain tumors. Sem Oncol 13:157–166, 1997 Sneed PK, Larson DA, Gutin PH: Brachytherapy and hyperthermia for malignant astrocytomas. Sem Oncol 21(2):186–197, 1994 Sneed PK, Lamborn KR, Larson DA, et al.: Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 35(1):37–44, 1996 Wen PU, Alexander E III, Black PM, et al.: Long term results of stereotactic brachytherapy used in the initial treatment of patients with glioblastomas. J Natl Cancer Inst 81:1918–1921, 1990 Loeffler JS, Alexander EIII, Wen PY, et al.: Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10(9):1379–1385, 1992 Alexander EIII, Coffey R, Loeffler J: In Radiosurgery for Gliomas, chap. 17, part III, 1995, pp. 207–225 Kristiansen K, Hagen S, Kellovold T, et al.: Combined modality therapy of operated astrocytomas grade III and IV. Confirmation of the value of postoperative irradiation and lack of potentiation of bleomycin on survival time. A prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer 47:649–652, 1981 Gannett D, Stea B, Lulu B, Adair T, et al.: Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Radiat Oncol Biol Phys 33(2):461–468, 1995 Florell RC, MacDonald DR, Irish WD, et al.: Selection bias, survival and brachytherapy for glioma. J Neurosurg 76:179–183, 1992 Loeffler JS, Alexander E III, Wen PY, Shea WM, Colemann CN, Kooy HM, et al.: Results of stereotactic brachytherapy used in the initial treatment of of patients with glioblastoma. J Natl Cancer Inst 82:1918–1921, 1990 Larson DA, Gutin PH, McDermott M, et al.: Gamma knife for glioma: Selection factors and survival. Int J Radiat Oncol Biol Phys 36(5):1045–1053, 1996 Curran Jr. WJ, Scott CH, Weinstein AS, et al.: Survival comparison of radiosurgery eligible and incligible malignant glioma patients treated with hyperfractionated radiation therapy and carmustine: A report of Radiation Therapy Oncology Group 83-02. J Clin Oncol 11:857–862, 1993 Sarkaria JN, Mehta MP, Loeffler JS, Buatti JM, et al.: Radiosurgery in the initial management of malignant gliomas: Survival comparison with the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 32(4):931–941, 1995 Shrieve DC, Alexander E, Wen PY, Fine HA, et al.: Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36(2):275–284, 1995 Flickinger JC, Loeffler JS, Larson DA: Stereotactic radiosurgery for intracranial malignancies. Oncology 8(1):81–98, 1994 Loeffler JS, Shrieve DC, Wen PY, Fine HA, et al.: Radiosurgery for intracranial malignancies. Sem Radiat Oncol 5(3):225–234, 1995 Kleinberg L, Slick T, Enger C: Short course radiotherapy is an appropriate option for most malignant glioma patients. Int J Radiat Oncol Biol Phys 38(1):31–36, 1997 Barbaro NM, Gutin PH, Wilson CB, et al.: Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery 20(4):525–528, 1987 Monte FD: Current management of meningiomas. Oncology 9(1):83–101, 1995 Goldsmith BJ, Wara WM, Wilson CB, et al.: Postoperative irradiation for subtotally resected meningiomas. J Neurosurg 80:195–201, 1994 Salazar OM: Ensuring local control in meningiomas. Int J Radiat Oncol Biol Phys 15(2):501–504, 1988 Wilson RC: Meningiomas: Genetics, malignancy, and the role of radiation in induction and treatment. J Neurosurg 81:666–675, 1994 Dumas CM, Lunsford LD, Kondziolka D, et al.: Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 32(5):699–705, 1993 Kondziolka D, Lunsford LD, Coffey RJ, et al.: Stereotactic radiosurgery of meningiomas. J Neurosurg 7:552–559, 1991 Kondziolka D, Lunsford LD, Coffey RJ, et al.: Gamma knife radiosurgery of meningiomas. Stereotact Funct Neurosurg 57:11–21, 1991 Ganz JC, Backlund E-O, Thorsen FA: The results of gamma knife surgery of meningiomas, related to size of tumor and dose. Stereotact Funct Neurosurg 61(suppl 1):23–29, 1993 Nicolato A, Ferraresi P, Foroni R, et al.: Gamma knife radiosurgery in skull base meningiomas. Stereotact Funct Neurosurg 66(suppl 1):112–120, 1996 Flickinger JC, Kondziolka D, Lunsford LD: Radiosurgery of benign lesions. Sem Rad Oncol 5(3):220–224, 1995 Hudgins WR, Barker JL, Schwartz DE, et al.: Gamma knife treatment of 100 consecutive meningiomas. Stereotact Funct Neurosurg 66(suppl):121–128, 1996 Pendl G, Schrottner O, Friehs GM, Feichtinger H: Stereotactic radiosurgery of skull base meningiomas. Stereotact Funct Neurosurg 64(suppl 1):11–18, 1995 Marks LB: The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg 75:177–180, 1991 Phillips MH, Frankel KA, Lyman JT, Fabrikant JI, Levy RP: Comparison of different radiation types and irradiation geometries in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 18:211–220, 1990 Phillips MH, Stelzer KJ, Griffin TW, Mayberg MR, Winn HR: Stereotactic radiosurgery: A review and comparison of methods. J Clin Oncol 12(5):1085–1099, 1994 Serago CF, Thornton AF, Urie MM, et al.: Comparison of proton and X-ray conformal dose distributions for radiosurgery applications. Med Physics 22(12):2111–2116, 1995 Suit H, Urie M: Review: Proton beams in radiation therapy. J Natl Cancer Inst 84:155–164, 1992 Tatsuzaki H, Urie MM, Linggood R: Comparative treatment planning: Proton vs X-ray beams against glioblastoma multiforme. Int J Radiat Oncol Biol Phys 22:265–273, 1991 Flickinger JC: An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys 17:879–885, 1989 Flickinger JC, Lunsford LD, Kondziolka D, et al.: Radiosurgery and brain tolerance: An analysis of neurodiagnostic imaging changes after gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 23:19–26, 1992 Marks LB: Complications following radiosurgery: A review. Radiat Oncol Invest 2:1–11, 1994 Pezner RD, Archambeau JO: Brain tolerance unit: A method to estimate risk of radiation brain injury for various dose schedules. Int J Radiat Oncol Biol Phys 7:397–402, 1981 Sheline GE, Wara WM, Smith V: Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228, 1980