Litter decomposition and nutrient release in different land use located in Valle del Cauca (Colombia)

Agroforestry Systems - Tập 95 - Trang 257-267 - 2021
Paola Andrea Piza1,2, Juan Carlos Suárez3,4,5, Hernán J. Andrade6
1Programa de Maestría en Agroforesteria, Facultad de Ciencias Agropecuarias, Universidad de la Amazonia, Florencia, Colombia
2Institución Universitaria Politécnico Grancolombiano - Gerencia de Aseguramiento de la Calidad, Bogotá D.C, Colombia
3Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ciencias Agropecuarias, Universidad de la Amazonia, Florencia, Colombia
4Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia, Colombia
5Centro de Investigaciones Amazónicas CIMAZ Macagual Cesar Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Colombia
6Departamento Producción y Sanidad Vegetal - Facultad de Ingeniería Agronómica, Universidad del Tolima - Grupo de Investigación PROECUT, Ibagué, Colombia

Tóm tắt

Litter decomposition and nutrient release are key factors in the nutrient cycling and availability in land uses and sustainable production systems. In three land uses systems (native forest—NF, coffee agroforestry system C-AFS, and pasture monoculture–PM), litter decomposition rate and nutrient release were estimated during 120 days. A total of 216 litterbags were systematically placed with 20 g of litter in dry matter basis each, which were extracted at 8, 23, 35, 50, 91, and 120 days later to estimate remnants dry matter (RDM %). No interaction was detected in litter decomposition rate between land use systems and decomposition time, presenting a different behavior between land uses in time. In contrast, land uses and time statistically affected (p < 0.01) litter decomposition. The exponential model (RDM = 100.0e(−0.0056t), SME = 23.5 for NF; RDM = 100.0e(−0.0064t), SME = 25.5 for C-AFS; and RDM = 100.0e(−0.0457t), SME = 136.8 for PM) presented the best fit to estimate the relative RDM (%) over time (t in days) in the three land uses. PM presented the greatest turnover rate at 120 days compared to AFS-C and NF (with a RDM of 14, 51 and 52%, respectively). The process of nutrient release was also faster in PM than in the other systems, with potassium as the fastest nutrient. These results suggest that the intervention in land use has an impact on rates of litter decomposition and nutrient, which affects nutrient cycling. The litter decomposition and nutrient release in agroforestry systems with coffee were similar to those in native forests which explain its contribution to sustainability of these production systems.

Tài liệu tham khảo

Abera G, Wolde-Meskel E, Bakken LR (2014) Unexpected high decomposition of legume residues in dry season soils from tropical coffee plantations and crop lands. Agron Sustain Dev 34:667–676 Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Advances in ecological research, vol 30. Academic Press, pp 1–67 AOAC (1990) Official methods of analysis of the association of official analytical chemists, 15th edn. DC, Association of Official Analytical Chemists, Washington Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Pastur GM (2012) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84(3):345–360 Basavaraju T, Gururaja M (2000) Tree – crop interactions in agroforestry systems; a brief review. Indian Forester 126:1155–1164 Beer J (1988) Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agrofor Syst 7(2):103–114 Beer J, Muschler R, Kass D, Somarriba E (1997) Shade management in coffee and cacao plantations. Agrofor Syst 38(1–3):139–164 Berg B (2000) Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Can J For Res 30(1):122–135 Boddey RM, Macedo R, Tarré RM, Ferreira E, De Oliveira OC, Rezende CDP, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agr Ecosyst Environ 103:389–403 Borrero GA, Jiménez J, Ricaurte JJ, Rivera M, Polanía JA, Núñez J, Barbosa N, Arango J, Cardoso JA, Rao IM (2017) Manual de protocolos. Nutrición y fisiología de plantas - Forrajes y fríjol. Área de Investigación en Agrobiodiversidad, Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia. Buettel JC, Ringwaldt EM, Hovenden MJ, Brook BW (2019) Importance of the local environment on nutrient cycling and litter decomposition in a tall eucalypt forest. Forests 10(4):340–348 Campbell BM, Frost P, King JA, Mawanza M, Mhlanga L (1994) The influence of trees on soil fertility on two contrasting semi-arid soil types at Matopos. Zimb Agrofor Syst 28(2):159–172 Cantillo EE, Gómez AF (2004) La Reserva natural de Yocoto: su vegetación leñosa. Colombia Forestal 8(17):75–93 Cerda R, Allinne C, Gary C, Tixier P, Harvey CA, Krolczyk L, Avelino J (2017) Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur J Agron 82:308–319 Cezar RM, Vezzani FM, Schwiderke DK, Gaiad S, Brown GG, Seoane CES, Froufe LCM (2015) Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agrofor Syst 89:1035–1047 Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Rev TREE 10:63–66 Das T, Das AK (2010) Litter production and decomposition in the forested areas of traditional homegardens: a case study from Barak Valley, Assam, northeast India. Agrofor Syst 79:157–170 Del Valle-Arango JI (2003) Descomposición de la hojarasca fina en bosques pantanosos del Pacífico Colombiano. Interciencia 28(3):148–153 Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2019) InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. Accessed 2 July 2020. Duarte EM, Cardoso IM, Stijnen T, Mendonça MAF, Coelho MS, Cantarutti RB, Mendonça ES (2013) Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agrofor Syst 87(4):835–847 Froufe LCM, Schwiderke DK, Castilhano AC, Cezar RM, Steenbock W, Seoane CES, Vezzani FM (2019) Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic rainforest biome. Agrofor Syst 94:1–13 Glover N, Beer J (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agrofor Syst 4(2):77–87 Hairiah K, Sulistyani H, Suprayogo D, Purnomosidhi P, Widodo RH, Van Noordwijk M (2006) Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For Ecol Manag 224:45–57 Heuveldop J, Fassbender HW, Alpizar L, Enriquez G, Fölster H (1988) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) and poro (Erythrina poeppigiana) in Costa Rica II. Cacao and wood production, litter production and decomposition. Agrofor Syst 6:37–48 Holdridge LR, Grenke WC, Hatheway T, Liang JA, Tosi J (1971) Forest environments in tropical life zones: a pilot study. Pergamon Press, Oxford Ibrahima A, Souhore P, Menick AAM (2019) Patterns of leaf litter decomposition as related to litter traits in the Sudano-Guinea Savannahs of Ngaoundere, Cameroon. J Agric Ecol Res Int 18(1):1–19 Isaac RS, Nair MA (2006) Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. Agrofor Syst 67:203–213 Lanuza O, Casanoves F, Delgado D, Van den Meersche K (2019) Leaf litter stoichiometry affects decomposition rates and nutrient dynamics in tropical forests under restoration in Costa Rica. Restor Ecol 27(3):549–558 Leblanc HA, Nygren P, McGraw RL (2006) Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practice in the humid tropics. Soil Biol Biochem 38:349–358 Lehmann J, Günther D, Socorro da mota M, Pereira de Almeida M, Zech W, Kaiser K (2001) Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system. Agrofor Syst 53:113–124 Littell R, Miliken G, Stroup W, Wolfinger R (1996) Best linear unbiased prediction, SAS system for mixed models. SAS Institute, Cary NC, pp 229–250 Liu P, Huang J, Sun OJ, Han X (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771–780 Lyngbaek AE, Muschler RG (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor Syst 53(2):205–213 Manhães CMC, Gama-Rodrigues EF, Moço MKS, Gama-Rodrigues AC (2013) Meso-and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agrofor Syst 87(5):993–1004 Marinho EB, de Oliveira AL, Zandonadi DB, Benedito LEC, de Souza RB, de Figueiredo CC, Busato JG (2014) Organic matter pools and nutrient cycling in different coffee production systems in the Brazilian Cerrado. Agrofor Syst 88(5):767–778 Mendonça ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern Brazil. Agrofor Syst 57(2):117–125 Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RC, Baligar VC (2010) Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia. Braz Appl Soil Ecol 46(3):347–354 Morozov G, Aosaar J, Varik M, Becker H, Lõhmus K, Padari A, Uri V (2019) Long-term dynamics of leaf and root decomposition and nitrogen release in a grey alder (Alnus incana (L.) Moench) and silver birch (Betula pendula Roth.) stands. Scand J For Ress 34(1):12–25 Mugendi DN, Nair PKR, Mugwe JN, O’neill MK, Woomer P, (1999) Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya: Part 2. Soil-fertility changes and maize yield. Agrofor Syst 46(1):39–50 Oduol PA, Aluma JRW (1990) The banana (Musa spp.)—Coffee robusta: traditional agroforestry system of Uganda. Agrofor Syst 11(3):213–226 Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331 Pinheiro JC, Bates DM, DebRoy SD, Sarkar D (2012) The nlme package: linear and nonlinear mixed effects models. R package version 3. Pleguezuel CR, Zuazo VD, Fernández JM, Peinado FM, Tarifa DF (2009) Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agric Ecosyst Environ 134(1–2):79–88 Ruiz-Jaén MC, Aide TM (2005) Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For Ecol Manag 218(1–3):159–173 Sánchez S, Crespo G, Hernández M (2009) Litter decomposition in a silvopastoral system of Panicum maximum and Leucaena leucocephala (Lam) de Wit cv. Cunningham. II. Influence of climatic factors. Pastos y Forrajes 32:387–393 Schwendener CM, Lehmann J, Rondon M, Wandelli E, Fernandes E (2007) Soil mineral N dynamics beneath mixtures of leaves from legume and fruit trees in Central Amazonian multi-strata agroforests. Acta Amazonica 37:313–320 Soleimani A, Hosseini SM, Bavani ARM, Jafari M, Francaviglia R (2019) Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. CATENA 177:227–237 Songwe NC, Okali DUU, Fasehun FE (1995) Litter decomposition and nutrient release in a tropical rainforest, Southern Bakundu Forest Reserve. Cameroon J Trop Ecol 11(3):333–350 Souza HN, Cardoso IM, Fernandes JM, Garcia FC, Bonfim VR, Santos AC, Mendonça ES (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80(1):1–16 Spohn M, Schleuss PM (2019) Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration. Soil Biol Biochem 130:220–226 Stigter C, Mohammed A, Nasr N, Al-Amin L, Onyewotu S, Oteng’I R, Kainkwa J, (2002) Agroforestry solutions to some African wind problems. J Wind Eng Ind Aerodyn 90:1101–1114 Tapia-Coral SC, Luizão FJ, Wandelli E, Fernandes EC (2005) Carbon and nutrient stocks in the litter layer of agroforestry systems in central Amazonia. Braz Agrofor Syst 65(1):33–42 Team RC (2018) R: a language and environment for statistical computing (version 3.4. 4)[computer software]. Vienna, Austria: R Foundation for Statistical Computing. Teklay T, Malmer A (2004) Decomposition of leaves from two indigenous trees of contrasting qualities under shaded-coffee and agricultural land-uses during the dry season at Wondo Genet, Ethiopia. Soil Biol Biochem 36:777–786 Thomas KD, Prescott CE (2000) Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Can J For Res 30(11):1698–1706 Tongkaemkaew U, Sukkul J, Sumkhan N, Panklang P, Brauman A, Ismail R (2018) Litterfall, litter decomposition, soil macrofauna, and nutrient content in rubber monoculture and rubber-based agroforestry plantations. Forest Soc 2(2):138–149 USDA (1996) Soil Survey laboratory methods manual. Soil survey investigations. Report no. 42. Versión 3. Departament of Agriculture, Washington, D.C, USA. Vanlauwe B, Aihou K, Aman S, Tossah BK, Diels J, Sanginga N, Merckx R (2001) Leaf quality of selected hedgerow species at two canopy ages in the derived savanna zone of West Africa. Agrofor Syst 53(1):21–30 Vestgarden LS (2001) Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effect of internal and external nitrogen. Soil Biol Biochem 33:465–474 Vityakon P, Dangthaisong N (2005) Environmental influences on nitrogen transformation of different quality tree litter under submerged and aerobic conditions. Agrofor Syst 63(3):225–236 Walker J, Reddel P (2007) Retrogressive succession and restoration on old landscapes. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, Nueva York, EEUU, pp 1–16 Xuluc-Tolosa FJ, Vester HFM, Ramirez N, Castellanos J, Lawrence D (2003) Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecol Manag 174:401–412 Yadav RS, Yadav BL, Chhipa BR (2008) Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agrofor Syst 73:1–12