Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: a new view of their mechanisms of action in bipolar disorder
Tóm tắt
Lithium is widely used to treat bipolar disorder, but its primary mechanism of action is uncertain. One proposal has been that lithium’s ability to inhibit the enzyme inositol monophosphatase (IMPase) reduces the supply of recycled inositol used for membrane phosphoinositide (PIns) synthesis. This 28-year-old hypothesis is still widely debated, however, largely because total levels of PIns in brain or in cultured neurons do not decrease after lithium treatment. Here we use mature cultured cortical neurons to show that, although lithium has little effect on steady-state levels of either inositol or PIns, it markedly inhibits the rate of PIns synthesis. Moreover, we show that rapid synthesis of membrane PIns preferentially uses inositol newly imported from the extracellular space. Unexpectedly, we also find that the antidepressant drug fluoxetine (FLUO: Prozac) stimulates the rate of PIns synthesis. The convergence of both lithium and FLUO in regulating the rate of synthesis of PIns in opposite ways highlights PIns turnover in neurons as a potential new drug target, as well as for understanding mood control in BD. Our results also indicate new avenues for investigation of how neurons regulate their supply of inositol.
Từ khóa
Tài liệu tham khảo
Suppes, T. et al. The Stanley Foundation Bipolar Treatment Outcome Network. II. Demographics and illness characteristics of the first 261 patients. J. Affect. Disord. 67, 45–59 (2001).
Goodwin, G. M. & Young, A. H. The British Association for Psychopharmacology guidelines for treatment of bipolar disorder: a summary. J. Psychopharmacol. 17(4 Suppl), 3–6 (2003).
Ghaemi, S. N., Hsu, D. J., Soldani, F. & Goodwin, F. K. Antidepressants in bipolar disorder: the case for caution. Bipolar Disord. 5, 421–433 (2003).
Hallcher, L. M. & Sherman, W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896–10901 (1980).
Andreassi, C. et al. An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat. Neurosci. 13, 291–301 (2010).
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).
Ohnishi, T. et al. Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J. Biol. Chem. 282, 637–646 (2007).
Phiel, C. J. & Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813 (2001).
Pittet, D., Schlegel, W., Lew, D. P., Monod, A. & Mayr, G. W. Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J. Biol. Chem. 264, 18489–18493 (1989).
del Rio, E., Nicholls, D. G. & Downes, C. P. Characterization of the effects of lithium and inositol on phosphoinositide turnover in cerebellar granule cells in primary culture. J. Neurochem. 66, 517–524 (1996).
del Rio, E., Shinomura, T., van der Kaay, J., Nicholls, D. G. & Downes, C. P. Disruption by lithium of phosphoinositide signalling in cerebellar granule cells in primary culture. J. Neurochem. 70, 1662–1669 (1998).
Agranoff, B. W. & Fisher, S. K. Inositol, lithium, and the brain. Psychopharmacol. Bull. 35, 5–18 (2001).
Sherman, W. R., Leavitt, A. L., Honchar, M. P., Hallcher, L. M. & Phillips, B. E. Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J. Neurochem. 36, 1947–1951 (1981).
Berry, G. T., Buccafusca, R., Greer, J. J. & Eccleston, E. Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol. Genet. Metab. 82, 87–92 (2004).
Moore, G. J. et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156, 1902–1908 (1999).
Silverstone, P. H., McGrath, B. M. & Kim, H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 7, 1–10 (2005).
Agam, G. et al. Knockout mice in understanding the mechanism of action of lithium. Biochem. Soc. Trans. 37(Pt 5), 1121–1125 (2009).
Bersudsky, Y., Shaldubina, A., Agam, G., Berry, G. T. & Belmaker, R. H. Homozygote inositol transporter knockout mice show a lithium-like phenotype. Bipolar Disord. 10, 453–459 (2008).
Cryns, K. et al. IMPA1 is essential for embryonic development and lithium-like pilocarpine sensitivity. Neuropsychopharmacology 33, 674–684 (2008).
Li, X. & Jope, R. S. Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology 35, 2143–2154 (2010).
Tobe, B. T. D. et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc. Natl Acad. Sci. USA 114, E4462–E4471 (2017).
Di Daniel, E., Cheng, L., Maycox, P. R. & Mudge, A. W. The common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 inhibition, myo-inositol-1-phosphate synthase or the sodium-dependent myo-inositol transporters. Mol. Cell. Neurosci. 32, 27–36 (2006).
Williams, R. S., Cheng, L., Mudge, A. W. & Harwood, A. J. A common mechanism of action for three mood-stabilizing drugs. Nature 417, 292–295 (2002).
Wong, Y. H., Kalmbach, S. J., Hartman, B. K. & Sherman, W. R. Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localized in the vasculature of brain. J. Neurochem. 48, 1434–1442 (1987).
Uldry, M. et al. Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO J. 23, 531–540 (2004).
Guo, W. et al. Developmental regulation of Na+/myo-inositol cotransporter gene expression. Brain. Res. Mol. Brain. Res. 51, 91–96 (1997).
Maallem, S., Berod, A., Mutin, M., Kwon, H. M. & Tappaz, M. L. Large discrepancies in cellular distribution of the tonicity-induced expression of osmoprotective genes and their regulatory transcription factor TonEBP in rat brain. Neuroscience 142, 355–368 (2006).
Di Daniel, E. et al. Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC. Cell. Biol. 10, 54 (2009).
Batty, I. H. & Downes, C. P. The mechanism of muscarinic receptor-stimulated phosphatidylinositol resynthesis in 1321N1 astrocytoma cells and its inhibition by Li+. J. Neurochem. 65, 2279–2289 (1995).
Fisher, S. K., Novak, J. E. & Agranoff, B. W. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J. Neurochem. 82, 736–754 (2002).
Novak, J. E., Turner, R. S., Agranoff, B. W. & Fisher, S. K. Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J. Neurochem. 72, 1431–1440 (1999).
Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).
Azevedo, C. & Saiardi, A. Extraction and analysis of soluble inositol polyphosphates from yeast. Nat. Protoc. 1, 2416–2422 (2006).
Dove, S. K. & Michell, R. H. Inositol lipid-dependent functions in Saccharomyces cerevisiae: analysis of phosphatidylinositol phosphates. Methods Mol. Biol. 462, 59–74 (2009).
Coady, M. J., Wallendorff, B., Gagnon, D. G. & Lapointe, J. Y. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem. 277, 35219–35224 (2002).
Shetty, H. U., Holloway, H. W. & Schapiro, M. B. Cerebrospinal fluid and plasma distribution of myo-inositol and other polyols in Alzheimer disease. Clin. Chem. 42, 298–302 (1996).
Swahn, C. G. Gas chromatographic-mass spectrometric determination of myo-inositol in human cerebrospinal fluid. J. Neurochem. 45, 331–334 (1985).
York, J. D., Ponder, J. W. & Majerus, P. W. Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl Acad. Sci. USA 92, 5149–5153 (1995).
Sade, Y. et al. IP3 accumulation and/or inositol depletion: two downstream lithium’s effects that may mediate its behavioral and cellular changes. Transl. Psychiatry 6, e968 (2016).
Hokin, M. R. & Hokin, L. E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. Biol. Chem. 203, 967–977 (1953).
del Rio, E., Nicholls, D. G. & Downes, C. P. Involvement of calcium influx in muscarinic cholinergic regulation of phospholipase C in cerebellar granule cells. J. Neurochem. 63, 535–543 (1994).
Cross, D. A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94–102 (2001).
Irvine, R. F. & Schell, M. J. Back in the water: the return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2, 327–338 (2001).
Wilson, M. S., Livermore, T. M. & Saiardi, A. Inositol pyrophosphates: between signalling and metabolism. Biochem. J. 452, 369–379 (2013).
Atack, J. R., Cook, S. M., Watt, A. P. & Ragan, C. I. Measurement of lithium-induced changes in mouse inositol(1)phosphate levels in vivo. J. Neurochem. 59, 1946–1954 (1992).
Berridge, M. J., Downes, C. P. & Hanley, M. R. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419 (1989).
Lykidis, A., Jackson, P. D., Rock, C. O. & Jackowski, S. The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J. Biol. Chem. 272, 33402–33409 (1997).
McPhee, F., Lowe, G., Vaziri, C. & Downes, C. P. Phosphatidylinositol synthase and phosphatidylinositol/inositol exchange reactions in turkey erythrocyte membranes. Biochem. J. 275(Pt 1), 187–192 (1991).
Kim, H. J. & Thayer, S. A. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol. Pharmacol. 75, 1021–1030 (2009).
Sudhof, T. C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).
Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004).
Suh, B. C. & Hille, B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370–378 (2005).
Kim, Y. J., Guzman-Hernandez, M. L. & Balla, T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell. 21, 813–824 (2011).
Gould, T. D., Zarate, C. A. & Manji, H. K. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J. Clin. Psychiatry 65, 10–21 (2004).
Atack, J. R. Inositol monophosphatase inhibitors–lithium mimetics? Med. Res. Rev. 17, 215–224 (1997).
Stern, S. et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol. Psychiatry 23, 1453–1465 (2018).
Berridge, M. J., Downes, C. P. & Hanley, M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595 (1982).
Karson, C. N. et al. Human brain fluoxetine concentrations. J. Neuropsychiatry Clin. Neurosci. 5, 322–329 (1993).
Mukherjee, J., Yang, Z. Y. & Lew, R. N-(6-18F-fluorohexyl)-N-methylpropargylamine: a fluorine-18-labeled monoamine oxidase B inhibitor for potential use in PET studies. Nucl. Med. Biol. 26, 111–116 (1999).
Bonanno, G. et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J. Neurosci. 25, 3270–3279 (2005).