Liquid methane at extreme temperature and pressure: Implications for models of Uranus and Neptune

Pleiades Publishing Ltd - Tập 97 - Trang 184-187 - 2013
D. Richters1, Th. D. Kühne2
1Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
2Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Mainz, Germany

Tóm tắt

We present large scale electronic structure based molecular dynamics simulations of liquid methane at planetary conditions. In particular, we address the controversy of whether or not the interior of Uranus and Neptune consists of diamond. In our simulations we find no evidence for the formation of diamond, but rather sp 2-bonded polymeric carbon. Furthermore, we predict that at high temperature hydrogen may exist in its monoatomic and metallic state. The implications of our finding for the planetary models of Uranus and Neptune are in detail discussed.

Tài liệu tham khảo

M. Podolak, A. Weizman, and M. Marley, Planet. Space Sci. 43, 1517 (1995). W. B. Hubbard, Science 214, 145 (1981). M. Podolak, J. I. Podolak, and M. Marley, Planet. Space Sci. 48, 143 (2000). W. J. Nellis, D. C. Hamilton, N. C. Holmes, et al., Science 240, 779 (1988). W. B. Hubbard, W. J. Nellis, A. C. Mitchell, et al., Science 253, 648 (1991). R. Helled, J. D. Anderson, M. Podolak, and G. Schubert, Astrophys. J. 726, 15 (2011). W. J. Nellis, F. H. Ree, M. van Thiel, and A. C. Mitchell, J. Chem. Phys. 75, 3055 (1981). W. J. Nellis, D. C. Hamilton, and A. C. Mitchell, J. Chem. Phys. 115, 1015 (2001). L. R. Benedetti, J. H. Nguyen, W. A. Caldwell, et al., Science 286, 100 (1999). F. H. Ree, J. Chem. Phys. 70, 974 (1979). M. Ross, Nature 292, 435 (1981). F. Ancilotto, G. L. Chiarotti, S. Scandolo, and E. Tosatti, Science 275, 1288 (1997). J. D. Kress, S. Goedecker, A. Hoisie, et al., J. Comput. Aided Mater. Design 5, 295 (1998). J. D. Kress, S. R. Bickham, L. A. Collins, et al., Phys. Rev. Lett. 83, 3896 (1999). L. Spanu, D. Donadio, D. Hohl, et al., Proc. Natl. Acad. Sci. USA 108, 6843 (2011). F. R. Krajewski and M. Parrinello, Phys. Rev. B 71, 233105 (2005). M. Ceriotti, T. D. Kühne, and M. Parrinello, J. Chem. Phys. 129, 024707 (2008); AIP Conf. Proc. 1148, 658 (2009); D. Richters, M. Ceriotti, and T. D. Kühne (in press). O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983). A. P. Horsfield, P. D. Godwin, D. G. Pettifor, and A. P. Sutton, Phys. Rev. B 54, 15773 (1996). https://cmsportal.caspur.it/index.php/CMPTool. T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007); T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009); T. D. Kühne, T. A. Pascal, E. Kaxiras, and Y. Jung, J. Phys. Chem. Lett. 2, 105 (2011); T. D. Kühne and R. Z. Khaliullin, Nature Commun. 4, 1450 (2013). P. L. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996); Phys. Rev. B 56, 3806 (1997). B. Conrath, F. M. Flasar, R. Hanel, et al., Science 246, 1454 (1989). I. Tamblyn and S. A. Bonev, Phys. Rev. Lett. 104, 065702 (2010). M. A. Morales, C. Pierleoni, E. Schwegler, and D. M. Ceperley, Proc. Natl. Acad. Sci. USA 107, 12799 (2010). S. Scandolo, Proc. Natl. Acad. Sci. USA 100, 3051 (2003). S. Azadi and T. D. Kühne, JETP Lett. 95, 449 (2012). N. F. Ness, M. H. Acuña, K. W. Behannon, et al., Science 233, 85 (1986); N. F. Ness, M. H. Acuñ, L. F. Burlaga, et al., Science 246, 1473 (1989). S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996). W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999). J. W. Warwick, D. R. Evans, I. H. Romig, et al., Science 233, 102 (1986); J. W. Warwick, D. R. Evans, G. R. Peltzer, et al., Science 246, 1498 (1989). R. Z. Khaliullin, H. Eshet, T. D. Kühne, et al., Nature Mater. 10, 693 (2011); Phys. Rev. B 81, 100103(R) (2010). L. M. Ghiringhelli, C. Valeriani, J. H. Los, et al., Mol. Phys. 106, 2011 (2008).