Liposomes modified by mono- and bis-phthalocyanines: A comprehensive EPR study

The European Physical Journal E - Tập 40 - Trang 1-7 - 2017
Dariusz Man1, Rudolf Słota2, Anna Kawecka1, Grzegorz Engel1, Gabriela Dyrda2
1Institute of Physics, Opole University, Opole, Poland
2Faculty of Chemistry, Opole University, Opole, Poland

Tóm tắt

The impact of selected metallophthalocyanines, featuring diverse molecular structure, upon the fluidity of liposome membranes was studied using the spin label EPR technique. The “mono”-type MPc's (M = Zn, Sn; Pc = C32H16N8 is the phthalocyanine ligand) and sandwich LnPc2 complexes (Ln = Nd, Sm, Gd) were explored. Liposomes were obtained in a sonication process, from egg yolk lecithin (EYL) in water. TEMPO and 16-DOXYL spin labels were used to monitor the peripheral and central part of the lipid double layer, respectively, which allowed to localize the phthalocyanine additive within the bilayer, as well as to perform independent measurements of changes in fluidity upon addition thereof. All the complexes tested were found to increase the fluidity in the middle of the lipid bilayer. However, at the water-lipid interface the LnPc2 compounds showed a relative small effect upon the phospholipids' arrangement, whereas in the case of ZnPc and SnPc it was found much more pronounced. EPR results were supplemented by measurements of static electrical charge, the investigated phthalocyanines may potentially feed into the membrane thus affecting its stability.

Tài liệu tham khảo

C.C. Leznoff, A.B.P. Lever (Editors), Phthalocyanines: Properties and Applications, Vols. 1--4 (Wiley-VCH, New York, 1989--1996)

J. Jiang (Editor), Functional Phthalocyanine Molecular Materials, in Structure and Bonding, edited by D.M.P. Mingos, Vol. 135 (Springer-Verlag, Heidelberg, 2010)

J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux, Coord. Chem. Rev. 44, 83 (1982)

R. Bonnett, Chem. Soc. Rev. 24, 19 (1995)

C.A. de Oliveira, A.E.H. Machado, F.B.T. Pessine, Chem. Phys. Lipids 133, 69 (2005)

A. Molnar, R. Dedic, A. Svoboda, J. Hala, J. Mol. Struct. 834-836, 488 (2007)

A. Salvati, S. Ristori, D. Pietrangeli, J. Oberdisse, L. Calamai, G. Martini, G. Ricciardi, Biophys. Chem. 131, 43 (2007)

M.N. Sibata, A.C. Tedesco, J.M. Marchetti, Eur. J. Pharm. Sci. 23, 131 (2004)

F. Postigo, F. Mora, M.A. De Madariaga, S. Nonell, M.L. Sagrista, Int. J. Pharm. 278, 239 (2004)

E. Reddi, J. Photochem. Photobiol. B 37, 189 (1997)

G. Falcioni, R. Gabiannelli, A. Santini, G. Zolese, D. Griffits, E. Bertoli, Appl. Organomet. Chem. 10, 451 (1996)

B.H. Gray, M. Porvaznik, C. Flemming, L.H. Lee, Cell. Biol. Toxicol. 3, 23 (1987)

H. Kleszczyńska, J. Sarapuk, S. Przestalski, Folia Histochem. Cytobiol. 37, 1 (1999)

D. Man, M. Podolak, G. Engel, Cell. Mol. Biol. Lett. 11, 56 (2006)

D. Man, I. Pisarek, M. Braczkowski, P. Pytel, R. Olchawa, J. Liposome Res. 24, 112 (2014)

M. Podolak, D. Man, Cell. Mol. Biol. Lett. 7, 961 (2002)

M. Podolak, G. Engel, D. Man, Z. Naturforsch. 61c, 453 (2006)

D. Man, M. Podolak, Z. Naturforsch. 62c, 427 (2007)

D. Man, J. Liposome Res. 18, 225 (2008)

D. Man, R. Słota, M.A. Broda, G. Mele, J. Li, J. Biol. Inorg. Chem. 16, 173 (2011)

G. Mele, E. García-López, L. Palmisano, G. Dyrda, R. Słota, J. Phys. Chem. C 111, 6581 (2007)

W.S. Singleton, M.S. Gray, M.L. Brown, J.L. White, J. Am. Oil Chem. Soc. 42, 53 (1965)

E.J. Shimshick, H.M. McConnell, Biochemistry 12, 2351 (1973)

M.A. Hemminga, Chem. Phys. Lipids 32, 323 (1983)

D. Man, R. Olchawa, K. Kubica, J. Liposome Res. 20, 211 (2009)

D. Man, R. Olchawa, J. Liposome Res. 23, 327 (2013)

M. Podolak, D. Man, S. Waga, S. Przestalski, Z. Naturforsch. 51c, 853 (1996)

K. Kubica, Comput. Chem. 26, 351 (2002)

K. Kubica, Cell. Mol. Biol. Lett. 7, 971 (2002)

D. Man, R. Olchawa, Eur. Biophys. J. 46, 325 (2017)

E. Boniewska-Bernacka, D. Man, R. Slota, M.A. Broda, J. Biochem. Mol. Toxicol. 25, 231 (2011)

S. Mitrus S, D. Man, J. Biochem. Mol. Toxicol. 26, 162 (2012)