Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry

Springer Science and Business Media LLC - Tập 14 Số 1 - Trang 23-38 - 2021
Adeleh Mohammadi1, Seid Mahdi Jafari1, Alireza Sadeghi Mahoonak1, Mohammad Ghorbani1
1Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abuin, E., Lissi, E., & Ahumada, M. (2012). Diffusion of hydrogen peroxide across DPPC large unilamellar liposomes. Chemistry and Physics of Lipids, 165(6), 656–661.

Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146.

Alkhalaf, W., El Soda, M., Gripon, J.-C., & Vassal, L. (1989). Acceleration of cheese ripening with liposomes-entrapped proteinase: influence of liposomes net charge. Journal of Dairy Science, 72(9), 2233–2238.

Anisha, G. (2017). β-Galactosidases, Current Developments in Biotechnology and Bioengineering (pp. 395–421). Elsevier.

Assadpour, E., & Jafari, S. M. (2019a). An overview of biopolymer nanostructures for encapsulation of food ingredients, Biopolymer Nanostructures for Food Encapsulation Purposes (pp. 1–35). Elsevier.

Assadpour, E., & Jafari, S. M. (2019b). An overview of lipid-based nanostructures for encapsulation of food ingredients, Lipid-Based Nanostructures for Food Encapsulation Purposes (pp. 1–34). Elsevier.

Balbaa, M., & Awad, D. (2018). The use of liposomes in enzymes and drug design: liposomes drug delivery system, Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology (pp. 128–140). IGI Global.

Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase—an overview. Biotechnology Advances, 27(4), 489–501.

Bao, J., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2003). Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochemical Engineering Journal, 13(1), 69–72.

Barragán, L. P., Buenrostro-Figueroa, J., González, C. A., & Marañon, I. (2016). Production, stabilization, and uses of enzymes from fruit and vegetable byproducts, Biotransformation of Agricultural Waste and By-Products (pp. 271–286). Elsevier.

Colas, J. C., Shi, W., Rao, V. S. N. M., Omri, A., Mozafari, M. R., & Singh, H. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 38(8), 841–847.

Cui, H., Wu, J., & Lin, L. (2016). Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. Journal of Dairy Science, 99(8), 6097–6104.

Cui, H., Yuan, L., Li, W., & Lin, L. (2017). Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef. Food Packaging and Shelf Life, 11, 49–57.

Demirci, M., Caglar, M. Y., Cakir, B., & Gülseren, İ. (2017). 3 - Encapsulation by nanoliposomes A2 - Jafari, Seid Mahdi, Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 74–113). Academic Press.

Deng, Z., Wang, F., Zhou, B., Li, J., Li, B., & Liang, H. (2019). Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocolloids, 89, 691–699.

Dos Santos VL, Dias-Souza MV (2016) Strategies based on microbial enzymes and surface-active compounds entrapped in liposomes for bacterial biofilm control, Nanobiomaterials in Antimicrobial Therapy. Elsevier, pp 385-418

Dua, J., Rana, A., & Bhandari, A. (2012). Liposome: methods of preparation and applications. Int J Pharm Stud Res, 3(2), 14–20.

Faridi Esfanjani, A., Assadpour, E., & Jafari, S. M. (2018). Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology, 76, 56–66.

Feng, L., Qiao, Y., Zou, Y., Huang, M., Kang, Z., & Zhou, G. (2014). Effect of flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage. Meat Science, 98(1), 34–40.

Galzigna, L., Garbin, L., & Burlina, A. (1979). Liposome-incorporated enzymes: studies on amylase. Clinical Biochemistry, 12(6), 267–269.

Garavand, F., Rahaee, S., Vahedikia, N., & Jafari, S. M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science and Technology, 89, 26–44.

Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152.

Gombos, L., Kardos, J., Patthy, A., Medveczky, P., Szilágyi, L., Málnási-Csizmadia, A., & Gráf, L. (2008). Probing conformational plasticity of the activation domain of trypsin: the role of glycine hinges. Biochemistry, 47(6), 1675–1684.

Gómez-Hens, A., & Fernández-Romero, J. M. (2005). The role of liposomes in analytical processes. TrAC Trends in Analytical Chemistry, 24(1), 9–19.

Graça, J., De Oliveira, R., De Moraes, M., & Ferreira, M. (2014). Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase. Bioelectrochemistry, 96, 37–42.

Haghighat-Kharazi, S., Milani, J. M., Kasaai, M. R., & Khajeh, K. (2018). Microencapsulation of α-amylase in beeswax and its application in gluten-free bread as an anti-staling agent. LWT, 92, 73–79.

Hill, K. J., Kaszuba, M., Creeth, J. E., & Jones, M. N. (1997). Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1326(1), 37–46.

Hsieh, Y. F., Chen, T. L., Wang, Y. T., Chang, J. H., & Chang, H. M. (2002). Properties of liposomes prepared with various lipids. Journal of Food Science, 67(8), 2808–2813.

Hwang, S. Y., Kim, H. K., Choo, J., Seong, G. H., Hien, T. B. D., & Lee, E. (2012). Effects of operating parameters on the efficiency of liposomal encapsulation of enzymes. Colloids and Surfaces B: Biointerfaces, 94, 296–303.

Jafari, S. M. (2017). Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press.

Jafari, S. M., & McClements, D. J. (2017). Nanotechnology approaches for increasing nutrient bioavailability, Advances in food and nutrition research (pp. 1–30). Elsevier.

Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A. A., & Pourhosseini, P. S. (2015). The encapsulation of flavourzyme in nanoliposome by heating method. Journal of Food Science and Technology, 52(4), 2063–2072.

Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A. A., Zoghi, A., & Mohammadi, M. (2016). Modelling of proteolysis in Iranian brined cheese using proteinase-loaded nanoliposome. International Journal of Dairy Technology, 69(1), 57–62.

Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Colombo Pimentel, T., Gomes da Cruz, A., & Mozafari.M.R. (2020). Accelerating ripening of Iranian white brined cheesesusing liposome-encapsulated and free proteinases. Biointerface Research in Applied Chemistry, 10(1), 4966–4971.

Jones, M. N., Hill, K. J., Kaszuba, M., & Creeth, J. E. (1998). Antibacterial reactive liposomes encapsulating coupled enzyme systems. International Journal of Pharmaceutics, 162(1-2), 107–117.

Kasinathan, N. (2014). Application of experimental design in preparation of nanoliposomes containing hyaluronidase. Journal of Drug Delivery 2014.

Kaszuba, M., & Jones, M. N. (1999). Hydrogen peroxide production from reactive liposomes encapsulating enzymes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1419(2), 221–228.

Katouzian, I., & Jafari, S. M. (2016). Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, 53, 34–48.

Kaushal, J., Singh, S. G., Raina, A., & Arya, S. K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatalysis and agricultural biotechnology.

Khanniri, E., Bagheripoor-Fallah, N., Sohrabvandi, S., Mortazavian, A. M., Khosravi-Darani, K., & Mohammadi, R. (2015). Application of liposomes in some dairy products. Critical Reviews in Food Science and Nutrition, 56, 484–493.

Kheadr, E. E., Vuillemard, J. C., & El Deeb, S. A. (2000). Accelerated Cheddar cheese ripening with encapsulated proteinases. International Journal of Food Science & Technology, 35(5), 483–495.

Kheadr, E., Vuillemard, J. C., & El-Deeb, S. (2002). Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. Journal of Food Science, 67(2), 485–492.

Kheadr, E. E., Vuillemard, J., & El-Deeb, S. (2003). Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Research International, 36(3), 241–252.

Kim, C.-K., Chung, H.-S., Lee, M.-K., Choi, L.-N., & Kim, M.-H. (1999). Development of dried liposomes containing β-galactosidase for the digestion of lactose in milk. International Journal of Pharmaceutics, 183(2), 185–193.

Kirby, C., Brooker, B., & Law, B. (1987). Accelerated ripening of cheese using liposome-encapsulated enzyme. International Journal of Food Science & Technology, 22(4), 355–375.

Koshani, R., & Jafari, S. M. (2019). Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 270, 123–146.

Labat, E., Morel, M., & Rouau, X. (2000). Effects of laccase and ferulic acid on wheat flour doughs. Cereal Chemistry, 77(6), 823–828.

Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: state of the art. Journal of Colloid Science and Biotechnology, 1(2), 147–168.

Larivière, B., El Soda, M., Soucy, Y., Trépanier, G., Paquin, P., & Vuillemard, J. (1991). Microfluidized liposomes for the acceleration of cheese ripening. International Dairy Journal, 1(2), 111–124.

Li, M., Hanford, M. J., Kim, J.-W., & Peeples, T. L. (2007). Amyloglucosidase enzymatic reactivity inside lipid vesicles. Journal of Biological Engineering, 1(1), 4.

Liu, Q., & Boyd, B. J. (2013). Liposomes in biosensors. Analyst, 138(2), 391–409.

Liu, W., Ye, A., & Singh, H. (2015). Progress in applications of liposomes in food systems, Microencapsulation and microspheres for food applications (pp. 151–170). Elsevier.

Macario, A., Verri, F., Diaz, U., Corma, A., & Giordano, G. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catalysis Today, 204, 148–155.

Marsanasco, M., Calabró, V., Piotrkowski, B., Chiaramoni, N. S., & del V. Alonso, S. (2016). Fortification of chocolate milk with omega-3, omega-6, and vitamins E and C by using liposomes. European Journal of Lipid Science and Technology, 118(9), 1271–1281.

Martí, M., Zille, A., Paulo, A. C., Parra, J. L., & Coderch, L. (2012). Laccases stabilization with phosphatidylcholine liposomes. Journal of Biophysical Chemistry, 3(1), 81–87.

Matsuzaki, M., McCafferty, F., & Karel, M. (1989). The effect of cholesterol content of phospholipid vesicles on the encapsulation and acid resistance of β-galactosidase from E. coli. International Journal of Food Science & Technology, 24(4), 451–460.

Mirafzali, Z., Thompson, C. S., & Tallua, K. (2014). Application of liposomes in the food industry, Microencapsulation in the Food Industry (pp. 139–150). Elsevier.

Moghimipour, E., & Handali, S. (2013). Liposomes as drug delivery systems: properties and applications. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(1), 169–185.

Mohammadi, R., Mahmoudzade, M., Atefi, M., Khosravi-Darani, K., & Mozafari, M. (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology, 68(1), 11–23.

Mohan, A., McClements, D. J., & Udenigwe, C. C. (2016). Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: influence of peptide molecular weight. Food Chemistry, 213, 143–148.

Olea, D., & Faure, C. (2003). Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity. The Journal of Chemical Physics, 119(12), 6111–6118.

Ozaltin, K., Postnikov, P. S., Trusova, M. E., Sedlarik, V., & Di Martino, A. (2019). Polysaccharides based microspheres for multiple encapsulations and simultaneous release of proteases. International Journal of Biological Macromolecules, 132, 24–31.

Perrett, S., Golding, M., & Williams, W. (1991). A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. Journal of Pharmacy and Pharmacology, 43(3), 154–161.

Piard, J., El Soda, M., Alkhalaf, W., Rousseau, M., Desmazeaud, M., Vassal, L., & Gripon, J. (1986). Acceleration of cheese ripening with liposome-entrapped proteinase. Biotechnology Letters, 8(4), 241–246.

Picon, A., Gaya, P., Medina, M., & Nunez, M. (1995). The effect of liposome-encapsulated Bacillus subtilis neutral proteinase on Manchego cheese ripening. Journal of Dairy Science, 78(6), 1238–1247.

Prévoteau, A., & Faure, C. (2012). Effect of onion-type multilamellar liposomes on Trametes versicolor laccase activity and stability. Biochimie, 94(1), 59–65.

Rafiee, Z., & Jafari, S. M. (2018). Application of lipid nanocarriers for the food industry. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive molecules in food (pp. 1–43). Cham: Springer International Publishing.

Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2018). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 1–30.

Rao, D., Chawan, C., & Veeramachaneni, R. (1994). Liposomal encapsulation of β-galactosidase: comparison of two methods of encapsulation and in vitro lactose digestibility. Journal of Food Biochemistry, 18(4), 239–251.

Raveendran, S., Parameswaran, B., Beevi Ummalyma, S., Abraham, A., Kuruvilla Mathew, A., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30.

Rodríguez-Nogales, J. M., & López, A. D. (2006). A novel approach to develop β-galactosidase entrapped in liposomes in order to prevent an immediate hydrolysis of lactose in milk. International Dairy Journal, 16(4), 354–360.

Sanchez, J. M., & Perillo, M. A. (2000). α-Amylase kinetic parameters modulation by lecithin vesicles: binding versus entrapment. Colloids and Surfaces B: Biointerfaces, 18(1), 31–40.

Sanromán, M., & Deive, F. (2017). Food enzymes, Current Developments in Biotechnology and Bioengineering (pp. 119–142). Elsevier.

Sessa, G., & Weissmann, G. (1970). Incorporation of lysozyme into liposomes a model for structure-linked latency. Journal of Biological Chemistry, 245(13), 3295–3301.

Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: progress and limitations. International Journal of Pharmaceutics, 154(2), 123–140.

Shukla, S., Haldorai, Y., Hwang, S. K., Bajpai, V. K., Huh, Y. S., & Han, Y.-K. (2017). Current demands for food-approved liposome nanoparticles in food and safety sector. Frontiers in Microbiology, 8, 2398.

Sindhu, R., Binod, P., & Pandey, A. (2017). α-Amylases, Current Developments in Biotechnology and Bioengineering (pp. 3–24). Elsevier.

Singh, H., Thompson, A., Liu, W., & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems, Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 287–318). Elsevier.

Subramani, T., & Ganapathyswamy, H. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. Journal of Food Science and Technology.

Taheri, A., & Jafari, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277–295.

Tavakoli, H., Hosseini, O., Jafari, S. M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231–9240.

Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., & Mortazavian, A. M. (2013). Stability and catalytic kinetics of protease loaded liposomes. Biochemical Engineering Journal, 72, 11–17.

Walde, P., & Ichikawa, S. (2001). Enzymes inside lipid vesicles, preparation, reactivity and applications. Biomolecular Engineering, 18(4), 143–177.

Wang, S., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2003). Optimal covalent immobilization of glucose oxidase-containing liposomes for highly stable biocatalyst in bioreactor. Biotechnology and Bioengineering, 83(4), 444–453.

Whitehurst, R. J., & Law, B. A. (2002). Enzymes in food technology. Wiley Online Library.

Wichmann, C., Naumann, P., Spangenberg, O., Konrad, M., Mayer, F., & Hoppert, M. (2003). Liposomes for microcompartmentation of enzymes and their influence on catalytic activity. Biochemical and Biophysical Research Communications, 310(4), 1104–1110.

Yanan, Z., JIANG, Y., Jing, G., Liya, Z., Ying, H., & Fei, J. (2013). Immobilization of glucose oxidase in liposome-templated biomimetic silica particles. Chinese Journal of Catalysis, 34(4), 741–750.

Yoshimoto, M., & Higa, M. (2014). A kinetic analysis of catalytic production of oxygen in catalase-containing liposome dispersions for controlled transfer of oxygen in a bioreactor. Journal of Chemical Technology & Biotechnology, 89(9), 1388–1395.

Yoshimoto, M., Sato, M., Wang, S., Fukunaga, K., & Nakao, K. (2006). Structural stability of glucose oxidase encapsulated in liposomes to inhibition by hydrogen peroxide produced during glucose oxidation. Biochemical Engineering Journal, 30(2), 158–163.

Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R., & Nakao, K. (2007). Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzyme and Microbial Technology, 41(6-7), 849–858.

Yoshimoto, M., Sato, M., Yoshimoto, N., & Nakao, K. (2008). Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity. Biotechnology Progress, 24(3), 576–582.

Yoshimoto, M., Takaki, N., & Yamasaki, M. (2010). Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced. Colloids and Surfaces B: Biointerfaces, 79(2), 403–408.

Yoshimoto, M., Yamashita, T., & Kinoshita, S. (2011). Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide. Enzyme and Microbial Technology, 49(2), 209–214.

Zhang, Q., Han, Y., & Xiao, H. (2017a). Microbial α-amylase: a biomolecular overview. Process Biochemistry, 53, 88–101.

Zhang, R., Song, X., Liang, C., Yi, X., Song, G., Chao, Y., Yang, Y., Yang, K., Feng, L., & Liu, Z. (2017b). Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 138, 13–21.