Liposomal Formulations in Clinical Use: An Updated Review
Tóm tắt
Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes.
Từ khóa
Tài liệu tham khảo
Bangham, 1965, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol., 13, 238, 10.1016/S0022-2836(65)80093-6
Barenholz, 2012, Doxil®—The first FDA-approved nano-drug: Lessons learned, J. Control. Release, 160, 117, 10.1016/j.jconrel.2012.03.020
Veronese, 2002, Introduction and overview of peptide and protein pegylation, Adv. Drug Deliv. Rev., 54, 453, 10.1016/S0169-409X(02)00020-0
Leonard, 2009, Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™), Breast, 18, 218, 10.1016/j.breast.2009.05.004
Murry, 2000, Clinical pharmacology of encapsulated sustained-release cytarabine, Ann. Pharmacother., 34, 1173, 10.1345/aph.19347
Slingerland, 2012, Liposomal drug formulations in cancer therapy: 15 Years along the road, Drug Discov. Today, 17, 160, 10.1016/j.drudis.2011.09.015
Working, 1996, Pharmacological-toxicological expert report. CAELYX.(Stealth liposomal doxorubicin HCl), Hum. Exp. Toxicol., 15, 751
Gabizon, 2003, Pharmacokinetics of pegylated liposomal doxorubicin, Clin. Pharmacokinet., 42, 419, 10.2165/00003088-200342050-00002
Barenholz, 2001, Liposome application: Problems and prospects, Curr. Opin. Colloid interface Sci., 6, 66, 10.1016/S1359-0294(00)00090-X
Barenholz, Y., and Haran, G. (1994). Efficient Loading and Controlled Release of Amphipathic Molecules. (No. 5,316,771), U.S. Patent.
Lasic, 1992, Gelation of liposome interior A novel method for drug encapsulation, FEBS Lett., 312, 255, 10.1016/0014-5793(92)80947-F
Lasic, 1995, Transmembrane gradient driven phase transitions within vesicles: Lessons for drug delivery, Biochim. Biophys. Acta (BBA) Biomembr., 1239, 145, 10.1016/0005-2736(95)00159-Z
Gabizon, 1995, Liposome circulation time and tumor targeting: Implications for cancer chemotherapy, Adv. Drug Deliv. Rev., 16, 285, 10.1016/0169-409X(95)00030-B
Gabizon, 1994, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes, Cancer Res., 54, 987
Batist, 2007, Cardiac safety of liposomal anthracyclines, Cardiovasc. Toxicol., 7, 72, 10.1007/s12012-007-0014-4
Petre, 2007, Liposomal daunorubicin as treatment for Kaposi’s sarcoma, Int. J. Nanomed., 2, 277
Allen, T.M., and Martin, F.J. (2004). Seminars in Oncology, Elsevier.
Forssen, 1994, Daunoxome® treatment of solid tumors: Preclinical and clinical investigations, J. Liposome Res., 4, 481, 10.3109/08982109409037058
Forssen, 1992, Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors, Cancer Res., 52, 3255
Gill, 1995, Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin, J. Clin. Oncol., 13, 996, 10.1200/JCO.1995.13.4.996
Fumagalli, 2000, The pharmacokinetics of liposomal encapsulated daunorubicin are not modified by HAART in patients with HIV-associated Kaposi’s sarcoma, Cancer Chemother. Pharmacol., 45, 495, 10.1007/s002800051025
Alberts, 1971, The pharmacokinetics of daunomycin in man, Clin. Pharmacol. Ther., 12, 96, 10.1002/cpt197112196
Chamberlain, 1995, Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases, Arch. Neurol., 52, 912, 10.1001/archneur.1995.00540330094020
Kim, 1993, Extended CSF cytarabine exposure following intrathecal administration of DTC 101, J. Clin. Oncol., 11, 2186, 10.1200/JCO.1993.11.11.2186
Glantz, 1999, A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors, Clin. Cancer Res., 5, 3394
Balazsovits, 1989, Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin, Cancer Chemother. Pharmacol., 23, 81, 10.1007/BF00273522
Kanter, 1992, Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99): Comparison with doxorubicin and empty liposomes in mice and dogs, In Vivo, 7, 85
Sparano, J.A., and Winer, E.P. (2001). Seminars in Oncology, Elsevier.
Cowens, 1993, Initial clinical (phase I) trial of TLC D-99 (doxorubicin encapsulated in liposomes), Cancer Res., 53, 2796
Harasym, 1997, Intratumor distribution of doxorubicin following iv administration of drug encapsulated in egg phosphatidylcholine/cholesterol liposomes, Cancer Chemother. Pharmacol., 40, 309, 10.1007/s002800050662
Harris, 2002, Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma, Cancer, 94, 25, 10.1002/cncr.10201
Batist, 2001, Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer, J. Clin. Oncol., 19, 1444, 10.1200/JCO.2001.19.5.1444
Mandawala, 2015, Cancer therapy using nanoformulated substances: Scientific, regulatory and financial aspects, Expert Rev. Anticancer ther., 15, 1233, 10.1586/14737140.2015.1086647
Vail, 1995, Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multi-institutional clinical trial, Clin. Cancer Res., 1, 1165
Anderson, 2010, Mifamurtide in osteosarcoma—A practical review, Drugs Today, 46, 327, 10.1358/dot.2010.46.5.1500076
Anderson, P., Meyers, P., Kleinerman, E., Oliva, C., and Liu, Y. (2012). Annals of Oncology, Oxford University Press.
Meyers, 2008, Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—A report from the Children’s Oncology Group, J. Clin. Oncol., 26, 633, 10.1200/JCO.2008.14.0095
Webb, 1995, Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models, Br. J. Cancer, 72, 896, 10.1038/bjc.1995.430
Johnston, 2006, Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations, Biochim. Biophys.Acta (BBA) Biomembr., 1758, 55, 10.1016/j.bbamem.2006.01.009
Krishna, 2001, Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties, J. Pharmacol. Exp. Ther., 298, 1206
Rodriguez, 2009, Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma, Cancer, 115, 3475, 10.1002/cncr.24359
Drummond, 2006, Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy, Cancer Res., 66, 3271, 10.1158/0008-5472.CAN-05-4007
Hong, K., Drummond, D.C., and Kirpotin, D. (2016). Liposomes Useful for Drug Delivery. (No. US20160030341 A1), U.S. Patent.
Li, 2016, Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial, Lancet, 387, 545, 10.1016/S0140-6736(15)00986-1
Lister, 1996, Amphotericin B lipid complex (Abelcet®) in the treatment of invasive mycoses: The North American experience, Eur. J. Haematol., 56, 18, 10.1111/j.1600-0609.1996.tb01348.x
Madden, 1990, Incorporation of amphotericin B into large unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol, Chem. Phys. Lipids, 52, 189, 10.1016/0009-3084(90)90114-7
Janoff, 1988, Unusual lipid structures selectively reduce the toxicity of amphotericin B, Proc. Natl. Acad. Sci. USA, 85, 6122, 10.1073/pnas.85.16.6122
Olsen, 1991, Tissue distribution of amphotericin B lipid complex in laboratory animals, J. Pharm. Pharmacol., 43, 831, 10.1111/j.2042-7158.1991.tb03189.x
Janoff, 1993, Amphotericin B lipid complex (ABLC™): A molecular rationale for the attenuation of amphotericin B related toxicities, J. Liposome Res., 3, 451, 10.3109/08982109309150730
Adedoyin, 1997, Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): Combined experience from phase I and phase II studies, Antimicrob. Agents Chemother., 41, 2201, 10.1128/AAC.41.10.2201
Proffitt, 1993, Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B, J. Liposome Res., 3, 429, 10.3109/08982109309150729
Woodle, M.C., and Storm, G. (1998). Long Circulating Liposomes: Old Drugs, New Therapeutics, Springer Science & Business Media.
Walsh, 1998, Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients, Antimicrob. Agents Chemother., 42, 2391, 10.1128/AAC.42.9.2391
Boswell, 1998, AmBisome (liposomal amphotericin B): A comparative review, J. Clin. Pharmacol., 38, 583, 10.1002/j.1552-4604.1998.tb04464.x
Guo, 1991, Novel antifungal drug delivery: Stable amphotericin B-cholesteryl sulfate discs, Int. J. Pharm., 75, 45, 10.1016/0378-5173(91)90249-N
Fielding, 1992, Relationship of pharmacokinetics and drug distribution in tissue to increased safety of amphotericin B colloidal dispersion in dogs, Antimicrob. Agents Chemother., 36, 299, 10.1128/AAC.36.2.299
Wang, 1995, Comparative tissue distribution and elimination of amphotericin B colloidal dispersion (Amphocil®) and Fungizone® after repeated dosing in rats, Pharm. Res., 12, 275, 10.1023/A:1016243313027
Sanders, 1991, Single-dose pharmacokinetics and tolerance of a cholesteryl sulfate complex of amphotericin B administered to healthy volunteers, Antimicrob. Agents Chemother., 35, 1029, 10.1128/AAC.35.6.1029
White, 1997, Amphotericin B colloidal dispersion vs. amphotericin B as therapy for invasive aspergillosis, Clin. Infect. Dis., 24, 635
Bowden, 1996, Phase I study of amphotericin B colloidal dispersion for the treatment of invasive fungal infections after marrow transplant, J. Infect. Dis., 173, 1208, 10.1093/infdis/173.5.1208
Strong, H.A., Levy, J., Huber, G., and Fsadni, M. (1999). Vision through Photodynamic Therapy of the Eye. (No. US5910510 A), U.S. Patent.
Richter, 1993, Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model, Photochem. Photobiol., 57, 1000, 10.1111/j.1751-1097.1993.tb02962.x
Bressler, 1999, Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: One-year results of 2 randomized clinical trials—TAP report 1, Arch. Ophthalmol., 117, 1329, 10.1001/archopht.117.10.1329
Alam, 2005, Extended-Release Epidural Morphine (DepoDur™): An Old Drug with a New Profile, Pain Pract., 5, 349, 10.1111/j.1533-2500.2005.00048.x
Hartrick, 2004, Sustained-Release Epidural Morphine (DepoDur™): A Review, Todays Ther. Trends, 22, 167
Kim, 1996, Sustained-release morphine for epidural analgesia in rats, J. Am. Soc. Anesthesiol., 85, 331, 10.1097/00000542-199608000-00015
Viscusi, 2006, Single-dose extended-release epidural morphine for pain following hip arthroplasty, Am. J. Ther., 13, 423, 10.1097/01.mjt.0000178903.72619.ee
Angst, 2006, Pharmacology of drugs formulated with DepoFoam™, Clin. Pharmacokinet., 45, 1153, 10.2165/00003088-200645120-00002
Richard, B.M., Rickert, D.E., Newton, P.E., Ott, L.R., Haan, D., Brubaker, A.N., Cole, P.I., Ross, P.E., Rebelatto, M.C., and Nelson, K.G. (2011). Safety evaluation of EXPAREL (DepoFoam bupivacaine) administered by repeated subcutaneous injection in rabbits and dogs: Species comparison. J. Drug Deliv.
Davidson, 2010, High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans, Anesth. Analg., 110, 1018, 10.1213/ANE.0b013e3181d26d2a
Miller, H., Terem, T., Kheladze, K., and Mosidze, B. (2009). Diseases of the Colon & Rectum, Lippincott Williams & Wilkins.
Clarke, 2006, Rate, intensity, and duration of local reactions to a virosome-adjuvanted vs. an aluminium-adsorbed hepatitis A vaccine in UK travellers, Travel Med. Infect. Dis., 4, 313, 10.1016/j.tmaid.2006.01.001
Zylberberg, 2016, Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape, Drug Deliv., 23, 1, 10.1080/10717544.2016.1177136
Bungener, 2002, Virosome-mediated delivery of protein antigens to dendritic cells, Vaccine, 20, 2287, 10.1016/S0264-410X(02)00103-2
Ambrosch, 1997, Immunogenicity and protectivity of a new liposomal hepatitis A vaccine, Vaccine, 15, 1209, 10.1016/S0264-410X(97)00015-7
Perez, 2003, Efficacy of virosome hepatitis A vaccine in young children in Nicaragua: Randomized placebo-controlled trial, J. Infect. Dis., 188, 671, 10.1086/377309
Bovier, 2002, Long-term immunogenicity of an inactivated virosome hepatitis A vaccine, J. Med. Virol., 68, 489, 10.1002/jmv.10244
Gluck, 2002, New technology platforms in the development of vaccines for the future, Vaccine, 20, 10, 10.1016/S0264-410X(02)00513-3
Gluck, 1994, Immunogenicity of new virosome influenza vaccine in elderly people, Lancet, 344, 160, 10.1016/S0140-6736(94)92758-8
Conne, 1997, Immunogenicity of trivalent subunit versus virosome-formulated influenza vaccines in geriatric patients, Vaccine, 15, 1675, 10.1016/S0264-410X(97)00087-X
Li, 2008, Characterization of nebulized liposomal amikacin (Arikace™) as a function of droplet size, J. Aerosol Med. Pulm. Drug Deliv., 21, 245, 10.1089/jamp.2008.0686
Clancy, J.P. (2009). Pediatric Pulmonology, Wiley-Liss Div John Wiley & Sons Inc.
Bilton, 2013, Phase 3 efficacy and safety data from randomized, multicenter study of liposomal amikacin for inhalation (ARIKACE) Compared with TOBI in cystic fibrosis patients with chronic infection due to Pseudomonas Aeruginosa, Pediatr. Pulmonol., 48, 207
Clancy, 2013, Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection, Thorax, 68, 818, 10.1136/thoraxjnl-2012-202230
Gupta, R., Daley, C.L., Winthrop, K.L., Ruoss, S., Addrizzo-Harris, D.J., Flume, P., Dorgan, D., Salathe, M.A., Olivier, B., and Brown-Elliott, A. (2014). C27. Diagnosis and Treatment of Nontuberculous Mycobacteria Infections, American Thoracic Society.
Timmerman, L. (2017, March 27). Oncothyreon Marches on with ‘Son of Stimuvax’ Cancer Vaccine. Available online: http://www.xconomy.com/seattle/2012/04/10/oncothyreon-marches-on-with-son-of-stimuvax-cancer-vaccine/.
Kroemer, 2013, Victories and deceptions in tumor immunology: Stimuvax®, Oncoimmunology, 2, e23687, 10.4161/onci.23687
Bradbury, 2008, Immunotherapy for lung cancer, J. Thorac. Oncol., 3, S164, 10.1097/JTO.0b013e318174e9a7
Vergati, 2010, Strategies for cancer vaccine development, BioMed Res. Int., 2010, 1
Cart, S., and Alert, N.P.R. (2017, March 27). Merck KGaA Starts Stimuvax Phase III Study INSPIRE in Asian Patients with Advanced NSCLC. Available online: http://www.businesswire.com/news/home/20091210005488/en/Merck-KGaA-Starts-Stimuvax-Phase-III-Study.
Zahid, 2008, Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy, J. Drugs Dermatol., 7, 405
Yarosh, 1991, Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes, J. Investig. Dermatol., 97, 147, 10.1111/1523-1747.ep12479314
Wolf, 2000, Topical treatment with liposomes containing T4 endonuclease V protects human skin in vivo from ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-α, J. Investig. Dermatol., 114, 149, 10.1046/j.1523-1747.2000.00839.x
Cafardi, 2008, T4 endonuclease V: Review and application to dermatology, Expert Opin. Biol. Ther., 8, 829, 10.1517/14712598.8.6.829
Chang, 2012, Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy, Int. J. Nanomed., 7, 49
Summers, D., Ruff, D., Smalling, R., Cardoza, D., Dottavio, D., and Lasic, D. (2003). Journal of Liposome Research, Marcel Dekker Inc.
Li, 2013, Therapeutic effect of liposomal prostaglandin E1 in acute lower limb ischemia as an adjuvant to hybrid procedures, Exp. Ther. Med., 5, 1760, 10.3892/etm.2013.1061
Chen, 2014, Thermosensitive liposomes with higher phase transition temperature for targeted drug delivery to tumor, Int. J. Pharm., 475, 408, 10.1016/j.ijpharm.2014.09.009
Mylonopouloua, E., Arvanitisa, C.D., Bazan-Peregrinoa, M., Arora, M., and Coussios, C.C. (2009, January 24–26). Ultrasonic activation of thermally sensitive liposomes. Proceedings of the 9th International Symposium on Therapeutic Ultrasound: Istu—2009, Aix-en-Provence, France.
Puri, 2013, Phototriggerable liposomes: Current research and future perspectives, Pharmaceutics, 6, 1, 10.3390/pharmaceutics6010001
Wood, B., Poon, R., Neeman, Z., Eugeni, M., Locklin, J., Dromi, S., Kachala, S., Probhakar, R., Hahne, W., and Libutti, S. (2007, January 19–21). Phase I study of thermally sensitive liposomes containing doxorubicin (ThermoDox) given during radiofrequency ablation (RFA) in patients with unresectable hepatic malignancies. Proceedings of the Gastrointestinal Cancers Symposium, Orlando, FL, USA.
Dromi, S., Quijano, J., Xie, J., Frenkel, V., Wood, B., and Li, K. (December, January 27). Pulsed-high intensity focused ultrasound (HIFU) enhanced delivery of Doxorubicin using heat sensitive liposome (Thermodox TM). Proceedings of the 91st Annual Meeting of the Radiological Society of North America, Chicago, IL, USA.
Palazzi, 2010, The role of hyperthermia in the battle against cancer, Tumori, 96, 902, 10.1177/548.6507
Mura, 2013, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991, 10.1038/nmat3776
Egusquiaguirre, 2012, Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research, Clin. Transl. Onco., 14, 83, 10.1007/s12094-012-0766-6
Boulikas, 2009, Clinical overview on Lipoplatin™: A successful liposomal formulation of cisplatin, Expert Opin. Investig. Drugs, 18, 1197, 10.1517/13543780903114168
Sotiriosrigatos, 2005, Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): Phase I study, Oncol. Rep., 13, 589
Stathopoulos, 2006, Liposomal cisplatin combined with gemcitabine in pretreated advanced pancreatic cancer patients: A phase I-II study, Oncol. Rep., 15, 1201
Mylonakis, 2010, Phase II study of liposomal cisplatin (Lipoplatin™) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer, Lung Cancer, 68, 240, 10.1016/j.lungcan.2009.06.017
Boulikas, 2005, Systemic Lipoplatin infusion results in preferential tumor uptake in human studies, Anticancer Res., 25, 3031
Harper, 2010, Advances in platinum chemotherapeutics, Chem. Eur. J., 16, 7064, 10.1002/chem.201000148
Immordino, 2006, Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential, Int. J. Nanomed., 1, 297
Farrell, 2011, Platinum formulations as anticancer drugs clinical and pre-clinical studies, Curr. Top. Med. Chem., 11, 2623, 10.2174/156802611798040714
Dragovich, 2003, 268 A phase II trial of aroplatin (L-NDDP), a liposomal DACH platinum, in patients with metastatic colorectal cancer (CRC)-a preliminary report, Eur. J. Cancer Suppl., 1, S82, 10.1016/S1359-6349(03)90301-6
Jakupec, M., Galanski, M., and Keppler, B. (2003). Reviews of physiology, Biochemistry and Pharmacology, Springer.
Zou, 1996, Lyophilized preliposomal formulation of the non-cross-resistant anthracycline annamycin: Effect of surfactant on liposome formation, stability and size, Cancer Chemother. Pharmacol., 39, 103, 10.1007/s002800050544
Wasan, 1995, Distribution of free and liposomal annamycin within human plasma is regulated by plasma triglyceride concentrations but not by lipid transfer protein, J. Pharm. Sci., 84, 1094, 10.1002/jps.2600840912
Zou, 1994, Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties, Cancer Res., 54, 1479
Pui, 2007, New therapeutic strategies for the treatment of acute lymphoblastic leukaemia, Nat. Rev. Drug Discov., 6, 149, 10.1038/nrd2240
Wetzler, 2013, Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia, Clin. Lymphoma Myeloma Leuk., 13, 430, 10.1016/j.clml.2013.03.015
Harrington, 2000, Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model, Clin. Cancer Res., 6, 4939
Zamboni, 2004, Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma, Cancer Chemother. Pharmacol., 53, 329, 10.1007/s00280-003-0719-4
Tomkinson, 2003, OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL, Leuk. Res., 27, 1039, 10.1016/S0145-2126(03)00092-4
Yu, 2007, STEALTH® liposomal CKD-602, a topoisomerase I inhibitor, improves the therapeutic index in human tumor xenograft models, Anticancer Res., 27, 2541
Zamboni, 2007, Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts, Clin. Cancer Res., 13, 7217, 10.1158/1078-0432.CCR-07-1035
Zhang, 2004, Development and characterization of a novel liposome-based formulation of SN-38, Int. J. Pharm., 270, 93, 10.1016/j.ijpharm.2003.10.015
Gupta, 2007, Irinotecan: A potential new chemotherapeutic agent for atypical or malignant meningiomas, J. Neurosurg., 106, 455, 10.3171/jns.2007.106.3.455
Maroun, 2006, A National Cancer Institute of Canada Clinical Trials Group Study–IND. 135: Phase I/II study of irinotecan (camptosar), oxaliplatin and raltitrexed (tomudex)(COT) in patients with advanced colorectal cancer, Eur. J. Cancer, 42, 193, 10.1016/j.ejca.2005.08.037
Zhang, 2005, Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation, Eur. J. Pharm. Biopharm., 59, 177, 10.1016/j.ejpb.2004.06.009
Tan, A., Hanauske, A., Gelderblom, H., Scheulen, M., van Warmerdam, L., Rosing, H., Fetterly, G., Shu, V., Sherman, J., and Rubin, E. (2006). Journal of Clinical Oncology, American Society of Clinical Oncology.
Slingerland, 2013, Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer, Clin. Ther., 35, 1946, 10.1016/j.clinthera.2013.10.009
Eichhorn, 2010, Vascular targeting by EndoTAG™-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer, Int. J. Cancer, 126, 1235, 10.1002/ijc.24846
Schuch, 2005, EndoTAG-1. MediGene, Curr. Opin. Investig. Drugs, 6, 1259
Lohr, M., Haas, S., Bechstein, W., Bodoky, G., Maerten, A., Fischbach, W., Lilla, C., Mescheder, A., Pap, A., and Fölsch, U. (2009, January 15–17). A phase II trial of cationic liposomal paclitaxel in combination with gemcitabine in patients with unresectable pancreatic cancer. Proceedings of the ASCO Gastrointestinal Cancers Symposium, San Francisco, CA, USA.
Wallace, 2000, The nonclinical safety evaluation of the anticancer drug ATRAGEN® (Liposomal all-trans-retinoic acid), Int. J. Toxicol., 19, 33, 10.1080/109158100225024
Douer, 2001, Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-transretinoic acid, Blood, 97, 73, 10.1182/blood.V97.1.73
Dutta, 2007, Drug carriers in pharmaceutical design: Promises and progress, Curr. Pharm. Des., 13, 761, 10.2174/138161207780249119
Wicki, 2015, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, J. Control. Release, 200, 138, 10.1016/j.jconrel.2014.12.030
Ahmad, 2005, Separation of liposome-entrapped mitoxantrone from nonliposomal mitoxantrone in plasma: Pharmacokinetics in mice, Methods Enzymol., 391, 176, 10.1016/S0076-6879(05)91010-0
Mitra, C.H.L.A., and Cheng, K. (2013). Advanced Drug Delivery, John Wiley & Sons.
Tari, 2007, Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts, Int. J. Oncol., 31, 1243
Ashizawa, 2015, Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100–1.01, Expert Opin. Drug deliv., 12, 1107, 10.1517/17425247.2015.996545
Ohanian, 2015, Safety, Pharmacokinetics, and Efficacy of BP-100–1.01 (Liposomal Grb-2 Antisense Oligonucleotide) in Patients with Refractory or Relapsed Acute Myeloid Leukemia (AML), Philadelphia Chromosome Positive Chronic Myelogenous Leukemia (CML), Acute Lymphoblastic Leukemia (ALL), and Myelodysplastic Syndrome (MDS), Blood, 126, 3801, 10.1182/blood.V126.23.3801.3801
Grumezescu, A.M. (2016). Nutrient Delivery, Elsevier.
Torchilin, 2014, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery, Nat. Rev. Drug Discov., 13, 813, 10.1038/nrd4333
Grumezescu, A., and Holban, A.M. (2016). Nanoarchitectonics for Smart Delivery and Drug Targeting, Elsevier.
Lee, J.-M., Yoon, T.-J., and Cho, Y.-S. (2013). Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res. Int.
Zuckerman, 2015, Clinical experiences with systemically administered siRNA-based therapeutics in cancer, Nat. Rev. Drug Discov., 14, 843, 10.1038/nrd4685
Resnier, 2013, A review of the current status of siRNA nanomedicines in the treatment of cancer, Biomaterials, 34, 6429, 10.1016/j.biomaterials.2013.04.060
Gaillard, P.J., Appeldoorn, C.C., Dorland, R., van Kregten, J., Manca, F., Vugts, D.J., Windhorst, B., van Dongen, G.A., de Vries, H.E., and Maussang, D. (2014). Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione PEGylated liposomal doxorubicin (2B3–101). PLoS ONE, 9.
Gaillard, 2012, Enhanced brain drug delivery: Safely crossing the blood–brain barrier, Drug Discov. Today Technol., 9, e155, 10.1016/j.ddtec.2011.12.002
Birngruber, 2014, Enhanced Doxorubicin Delivery to the Brain Administered Through Glutathione PEGylated Liposomal Doxorubicin (2B3-101) as Compared with Generic Caelyx,®/Doxil®—A Cerebral Open Flow Microperfusion Pilot Study, J. Pharm. Sci., 103, 1945, 10.1002/jps.23994