Liouville Property for Solutions of the Linearized Degenerate Thin Film Equation of Fourth Order in a Halfspace

Results in Mathematics - Tập 70 - Trang 137-161 - 2015
S. P. Degtyarev1
1Institute for Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, Donetsk, Ukraine

Tóm tắt

We consider a boundary value problem in a half-space for a linear parabolic equation of fourth order with a degeneration on the boundary of the half-space. The equation under consideration is substantially a linearized thin film equation. We prove that, if the right hand side of the equation and the boundary condition are polynomials in the tangential variables and time, the same property has any solution of a power growth. It is shown also that the specified property does not apply to the normal variable. As an application, we present a theorem of uniqueness for the problem in the class of functions of power growth.

Tài liệu tham khảo

Edmunds D.E., Peletier L.A.: A Liouville theorem for degenerate elliptic equations. J. Lond. Math. Soc. 7(2), 95–100 (1973) Tianling J., Jingang X.: A Liouville theorem for solutions of degenerate Monge–Ampe’re equations. Commun. Partial Differ. Equ. 39(2), 306–320 (2014) Genggeng H.: A Liouville theorem of degenerate elliptic equation and its application. Discrete Contin. Dyn. Syst. 33(10), 4549–4566 (2013) Diaz G.: A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Osserman condition. Math. Ann. 353(1), 145–159 (2012) Eidelman, S.D., Malickaja, A.P.: Liouville theorems for a certain class of degenerate parabolic equations. In: Mathematics Collection, pp. 250–253. “Naukova Dumka”, Kiev (1976) Shapoval A.B.: Liouville’s theorem for a second-order elliptic equation with degenerate coefficients. Moscow Univ. Math. Bull. 53(2), 22–27 (1998) DiBenedetto E., Gianazza U., Vespri V.: Liouville-type theorems for certain degenerate and singular parabolic equations. C. R. Math. Acad. Sci. Paris 348(15–16), 873–877 (1998) Moschini L.: New Liouville theorems for linear second order degenerate elliptic equations in divergence form. Ann. Inst. H. Poincare’ Anal. Non Line’aire 22(1), 11–23 (1998) Kuz’menko Yu.T.: The Liouville theorem for degenerate elliptic and parabolic equations. Mat. Zametki. 29(3), 397–408 (1981) Kolodii I.M.: The Liouville theorem for generalized solutions of degenerate uasilinear parabolic equations. Differentsial’nye Uravneniya 21(5), 841–854 (1985) Degtyarev, S.P.: Classical solvability of multidimensional two-phase Stefan problem for degenerate parabolic equations and Schauder’s estimates for a degenerate parabolic problem with dynamic boundary conditions. Nonlinear Differ. Equ. Appl. (2007). doi:10.1007/s00030-014-0280-3 Dominik, J.: On Uniqueness of weak solutions for the thin-film equation (2013). arXiv:1310.6222 Knüpfer H.: Well-posedness for the Navier slip thin-film equation in the case of partial wetting. Commun. Pure Appl. Math. 64(9), 1263–1296 (2011) Giacomelli L., Knüpfer H., Otto F.: Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ. 245(6), 1454–1506 (2008) Giacomelli L., Knüpfer H.: A free boundary problem of fourth order: classical solutions in weighted Hölder spaces. Commun. Partial Differ. Equ. 35(10–12), 2059–2091 (2010) Giacomelli L., Gnann M.V., Knüpfer H., Otto F.: Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. J. Differ. Equ. 257(1), 15–81 (2014) Giacomelli L., Gnann M.V., Otto F.: Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3. Eur. J. Appl. Math. 24(5), 735–760 (2013) Boutat M., Hilout S., Rakotoson J.-E., Rakotoson J.-M.: A generalized thin-film equation in multidimensional space. Nonlinear Anal. 69(4), 1268–1286 (2008) Bertsch M., Giacomelli L., Karali G.: Thin-film equations with “partial wetting” energy: existence of weak solutions. Phys. D. 209(1–4), 17–27 (2005) Dal Passo R., Garcke H., Grün G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (1998) Liang B.: Mathematical analysis to a nonlinear fourth-order partial differential equation. Nonlinear Anal. 74(11), 3815–3828 (2011) Bazalii B.V., Degtyarev S.P.: On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid. Math. USSR Sb. 60(1), 1–17 (1988) Bizhanova G.I., Solonnikov V.A.: On problems with free boundaries for second-order parabolic equations. St. Petersburg Math. J. 12(6), 949–981 (2001) Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983) Andreucci D., Tedeev A.: Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity. Interfaces Free Bound 3(3), 233–264 (2001) Andreucci D., Tedeev A.: Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differ. Equ. 10(1), 89–120 (2005) Degtyarev S.P., Tedeev A.F.: \({L_{1}-L_{\infty}}\) estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data. Sb. Math. 198(5–6), 639–660 (2007) Degtyarev S.P., Tedeev A.F.: Two-sided estimates for the support of a solution of the Cauchy problem for an anisotropic quasilinear degenerate equation. Ukr. Math. J. 58(11), 1673–1684 (2006) Degtyarev S.P., Tedeev A.F.: Estimates for the solution of the Cauchy problem with increasing initial data for a parabolic equation with anisotropic degeneration and double nonlinearity. Dokl. Math. 76(3), 824–827 (2007) Degtyarev S.P.: On conditions for the instantaneous compactification of the support of the solution and on sharp estimates for the support in the Cauchy problem for a parabolic equation with double nonlinearity and absorption. Sb. Math. 199(3–4), 511–538 (2008) Degtyarev S.P.: Instantaneous support shrinking phenomenon in the case of fast diffusion for a doubly nonlinear parabolic equation with absorption. Adv. Differ. Equ. 13(11–12), 1031–1050 (2008) Degtyarev S.P.: On the instantaneous shrinking of the support of a solution in the Cauchy problem for an anisotropic parabolic equation. Ukr. Math. J. 61(5), 747–763 (2009) Degtyarev S.P.: The effect of nonhomogeneous absorption on the instantaneous shrinking of the support in the Cauchy problem for a quasilinear degenerate equation. Ukr. Math. Bull. 6(3), 335–366 (2009) Maz’ja V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985) Adams R., Fournier J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier Academic Press, Amsterdam (2003) Kufner A., Persson L.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing Co. Inc., River Edge (2003)