Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic

Wiley - Tập 14 Số 7 - Trang 1612-1623 - 2012
Raoul‐Marie Couture1, Agnieszka Sekowska2, Gang Fang3, Antoine Danchin2,4
1Ecohydrology, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, Canada N2L 3G1
2AMAbiotics SAS, Bâtiment G1, 2 rue Gaston Crémieux, 91000 Evry, France
3Department of Molecular Biophysics & Biochemistry, Medical School, Yale University New Haven, CT 06520, USA
4Department of Biochemistry, Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong

Tóm tắt

Summary

Geochemistry often reveals unexpected (anti)correlations. Arsenic (As) and selenium (Se) are cases in point. We explore the hypothesis that bacteria living in an As‐replete environment recruited a biological process involving Se and sulfur to fulfil their need for As detoxification. In analogy with the formation of arsenolipids and arsenosugars, which are common non‐toxic As metabolites derived from microbial and plant metabolism, we attempt to explain the prevalence of novel sulfur‐containing As derivatives, in particular monothioarsenate, in the aqueous environment. Thiolated‐As species have been overlooked so far mainly because of the difficulty of their identification. Based on comparative genomics, we propose a scenario where SelD and SelU proteins, commonly used to make selenophosphate and modify transfer RNA, have been recruited to make monothioarsenate, a relatively innocuous arsenical. This hypothesis is discussed in terms of the relative geochemical distribution of Se and As.

Từ khóa


Tài liệu tham khảo

10.1007/0-387-27565-7_3

10.1371/journal.pgen.1000859

10.1099/mic.0.027839-0

10.1016/j.watres.2006.01.025

10.1126/science.7455685

10.1128/MMBR.66.2.250-271.2002

10.1007/s00253-009-1929-4

Challenger F., 1951, Biological methylation, Adv Enzymol Relat Subj Biochem, 12, 429

10.1016/j.biortech.2010.11.059

10.1016/j.jhazmat.2011.02.029

10.1126/science.217.4562.829

Danchin A., 2010, Science and arsenic fool's gold: a toxic broth, J Cosmol, 13, 3617

10.1016/j.scitotenv.2011.05.044

10.1016/j.plipres.2004.07.001

10.1016/j.ecss.2006.01.007

10.1007/s007920100196

10.1021/tx900179r

10.1007/BF02143584

10.1021/cb2000023

Franz A.K., 2007, The synthesis of biologically active organosilicon small molecules, Curr Opin Drug Discov Devel, 10, 654

10.1007/978-0-387-79284-2_2

10.1021/bi00210a001

10.1186/1745-6150-3-4

10.1039/b409661b

Härtig C., 2012, Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring, Environ Sci Technol

10.1016/j.gca.2008.06.018

10.1128/AEM.00545-10

Iciek M., 2001, Biosynthesis and biological properties of compounds containing highly reactive, reduced sulfane sulfur, Pol J Pharmacol, 53, 215

10.1099/mic.0.039719-0

10.1111/j.1472-4669.2008.00171.x

10.1146/annurev-biochem-030409-143718

10.1128/AEM.01066-06

10.1038/ngeo1329

10.1016/j.earscirev.2007.07.006

Leisser H.(2007)Column experiments simulating various scenarios for arsenic mobilisation in Bangladesh. Diploma Thesis. Bayreuth Germany:Universität Bayreuth.

10.1016/0165-1110(80)90027-5

10.1016/j.talanta.2010.10.050

10.1074/jbc.M110246200

10.1073/pnas.0603974103

10.1016/j.chemosphere.2010.08.007

10.1016/j.copbio.2005.02.002

10.1099/00207713-46-4-1153

10.1021/es103604p

10.1007/s00248-011-9919-3

10.1021/es2004649

10.1016/j.envres.2011.11.007

10.1016/0162-0134(90)80060-B

10.1371/journal.pgen.0030053

10.1016/j.envres.2010.10.009

Newman W.R., 1991, The Summa Perfectionis and Late Medieval Alchemy : A Critical Edition, Translation and Study

10.1096/fasebj.5.12.1916090

10.1021/jf063262e

10.1038/333134a0

10.1073/pnas.0402775101

10.1002/jcc.21950

10.1007/s10534-008-9195-y

10.1130/0091-7613(1997)025<0827:EOALAM>2.3.CO;2

10.1007/s007750000130

10.1016/j.gca.2011.12.024

Phung L.T., 2011, The Halomonas Sp. GFAJ‐1 Whole Genome Shotgun (WGS) Project In GenBank

10.1371/journal.pgen.1002522

10.1021/es900111z

10.1021/es070273v

10.1897/07-633.1

10.1080/01490450902755364

10.1021/ac1024717

10.1016/B0-08-043751-6/09047-2

10.1073/pnas.0506836103

10.1016/j.talanta.2009.01.013

10.1007/978-1-4419-6315-4_4

10.4315/0362-028X.JFP-10-445

10.1128/JB.180.7.1655-1661.1998

10.1007/s00216-006-0401-x

10.1016/0021-9673(95)01319-9

10.1016/S0009-2541(00)00246-1

Sekowska A., 2000, Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction, J Mol Microbiol Biotechnol, 2, 145

10.1186/1471-2180-4-9

10.1371/journal.pbio.1000354

10.1016/j.micres.2011.05.007

10.1016/S0883-2927(02)00018-5

10.1146/annurev.micro.60.080805.142053

10.1016/j.febslet.2012.01.024

Suess E.(2011)Investigations towards a better understanding of arsenic‐sulfur speciation in aquatic environments: formation stability structural characterization and conflicting analyses. PhD Thesis. Bayreuth Germany:Universität Bayreuth p.98.

10.1021/ac901094b

10.1016/j.chemosphere.2011.01.045

10.1007/s002030050673

10.1021/es9030358

10.1007/978-1-4612-2864-6_4

10.1073/pnas.89.7.2975

Vlassopoulos D., 2010, 13th International Symposium on Water‐Rock Interaction, WRI‐13, 323

10.1634/theoncologist.6-suppl_2-3

10.1016/0016-7037(90)90434-M

10.1016/j.gca.2010.12.021

10.1186/1467-4866-4-1

10.1021/es203434d

10.1126/science.1197258

10.1074/jbc.M110.184457

10.1128/JB.187.20.6991-6997.2005

10.1104/pp.111.178947

10.1111/j.1462-2920.2010.02420.x

10.1021/tx00050a006

10.1128/JB.00244-10

10.2475/ajs.305.6-8.467

Zhang S., 2004, Oxidation of Refractory Gold Concentrates and Simultaneous Dissolution of Fold in Aerated Alkaline Solutions

10.1186/1471-2164-9-251