Linking root exudation to belowground economic traits for resource acquisition

New Phytologist - Tập 233 Số 4 - Trang 1620-1635 - 2022
Zhihui Wen1, Philip J. White2, Jianbo Shen1, Hans Lambers1,3
1College of Resources and Environmental Sciences National Academy of Agriculture Green Development Key Laboratory of Plant–Soil Interactions Ministry of Education China Agricultural University 100193 Beijing China
2Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
3School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia

Tóm tắt

Summary

The concept of a root economics space (RES) is increasingly adopted to explore root trait variation and belowground resource‐acquisition strategies. Much progress has been made on interactions of root morphology and mycorrhizal symbioses. However, root exudation, with a significant carbon (C) cost (c. 5–21% of total photosynthetically fixed C) to enhance resource acquisition, remains a missing link in this RES. Here, we argue that incorporating root exudation into the structure of RES is key to a holistic understanding of soil nutrient acquisition. We highlight the different functional roles of root exudates in soil phosphorus (P) and nitrogen (N) acquisition. Thereafter, we synthesize emerging evidence that illustrates how root exudation interacts with root morphology and mycorrhizal symbioses at the level of species and individual plant and argue contrasting patterns in species evolved in P‐impoverished vs N‐limited environments. Finally, we propose a new conceptual framework, integrating three groups of root functional traits to better capture the complexity of belowground resource‐acquisition strategies. Such a deeper understanding of the integrated and dynamic interactions of root morphology, root exudation, and mycorrhizal symbioses will provide valuable insights into the mechanisms underlying species coexistence and how to explore belowground interactions for sustainable managed systems.

Từ khóa


Tài liệu tham khảo

10.1093/treephys/tpaa051

10.1105/tpc.18.00743

10.1007/s10021-012-9575-6

10.1104/pp.91.1.227

10.1111/j.1365-3040.2009.01926.x

10.1146/annurev.arplant.57.032905.105159

10.1126/sciadv.aba3756

10.1111/nph.13132

10.1007/s11104-008-9877-9

10.1111/nph.14976

Canarini A, 2019, Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli, Frontiers in Plant Science, 10

10.1038/nature21417

10.1038/nplants.2016.224

10.1016/j.tplants.2021.08.003

10.1073/pnas.1601006113

10.1016/j.pbi.2017.06.004

10.1111/nph.12440

10.1016/j.soilbio.2015.02.019

10.1002/ece3.1147

10.1111/j.0269-8463.2004.00835.x

10.1016/j.tplants.2017.05.004

10.1038/nplants.2017.74

10.1016/j.cub.2020.08.005

10.1023/A:1020809400075

10.1111/1365-2745.13612

10.1007/s11104-017-3188-y

10.1016/j.tplants.2010.08.009

10.3389/fmicb.2013.00216

10.1111/1365-2745.13407

10.1007/s11104-011-0783-1

10.1073/pnas.0912421107

10.1016/j.fcr.2020.107960

10.1111/nph.13451

10.1038/s41396-021-00920-2

10.1111/pce.12208

10.1111/1365-2435.12883

10.1111/pce.13925

10.1007/s11104-016-2884-3

10.3389/fmicb.2019.00168

10.1007/s11104-020-04719-6

10.1111/geb.13179

10.1002/ece3.4383

10.1016/j.soilbio.2014.06.017

10.1016/j.soilbio.2020.108019

10.1111/gcb.15391

10.1007/s11104-021-04886-0

10.1111/1365-2745.13276

10.1111/nph.16760

10.1023/A:1013351617532

10.1016/j.gexplo.2005.08.041

10.1023/A:1022371130939

10.1016/B978-0-12-804312-7.00008-5

10.1007/s11104-020-04584-3

10.1016/j.tplants.2008.08.010

10.1111/nph.14486

Jakobsen I, 2005, Phosphorus: agriculture and the environment, 437

10.3389/fpls.2013.00134

10.1111/nph.17081

10.1016/j.soilbio.2004.08.008

10.1111/j.1469-8137.2004.01130.x

10.1007/s11104-009-9925-0

10.1111/nph.13138

10.1007/s11104‐021‐05191‐6

10.1007/s10533-014-0028-5

10.3390/metabo10080335

10.1038/nclimate2580

10.1007/s11104-015-2770-4

10.1111/nph.12842

10.1038/s41467-019-10245-6

10.1073/pnas.1912130117

10.1111/1365-2745.12562

10.1007/BF02370652

10.1038/nrmicro.2018.9

10.1146/annurev‐arplant‐102720‐125738

10.1007/s11104-017-3427-2

10.1016/j.pbi.2015.04.002

10.1016/j.tree.2007.10.008

10.1093/aob/mcl114

10.1017/S0021859614001166

10.1007/s11104-018-3732-4

10.1111/nph.14710

10.1007/s11104-018-3616-7

10.1073/pnas.0704591104

10.1111/nph.12778

10.1093/treephys/tpx131

10.1071/CP16015

10.1111/ele.12939

10.1016/j.tplants.2017.03.011

10.1111/1365-2435.13109

10.1071/BT06118

10.1111/pce.12451

10.1111/nph.15738

10.3389/fpls.2016.01939

10.1038/nature25783

10.1007/s00572-003-0261-6

10.1038/nrmicro.2016.149

10.5194/bg-17-5309-2020

10.1111/nph.13363

10.3389/fpls.2019.01215

10.1016/j.soilbio.2016.12.004

10.1111/nph.16389

10.1007/978-94-010-1009-2_9

10.1016/j.soilbio.2019.01.015

10.1111/1365-2435.13303

10.1111/j.1469-8137.2008.02751.x

10.1111/pce.12207

10.1007/978-90-481-2666-8_9

10.1111/1462-2920.12081

10.1016/j.rhisph.2018.06.004

10.1111/nph.13175

10.1007/s11104-016-2928-8

10.1073/pnas.0712078105

10.1111/nph.12221

10.1111/j.1365-2435.2008.01495.x

10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2

10.1111/j.1461-0248.2010.01570.x

10.1097/00010694-192708000-00005

10.1016/j.tplants.2019.09.010

10.1038/nplants.2015.33

10.1016/j.soilbio.2017.07.006

10.1016/j.tplants.2018.10.004

10.1111/nph.14967

10.1111/nph.16924

10.1111/1365-2745.12211

10.1007/s11104-009-9895-2

10.1071/CP07125

10.1104/pp.111.175448

10.1111/pce.12902

10.7554/eLife.24125

10.1111/nph.13828

10.1111/j.1469-8137.2006.01667.x

10.1111/j.1365-3040.2012.02547.x

10.1016/j.tplants.2017.09.003

10.1038/ismej.2010.5

10.1093/treephys/tpab118

10.1104/pp.103.035659

10.1104/pp.111.175232

Smith SE, 2008, Mycorrhizal symbiosis

10.1146/annurev-arplant-042110-103846

10.1016/j.plantsci.2015.01.012

10.1111/nph.16865

10.1093/treephys/tpx026

10.1111/j.1365-2435.2008.01402.x

10.1016/j.mib.2019.10.005

10.1111/brv.12538

10.1126/science.aba1223

10.1111/nph.14876

10.1016/j.rhisph.2020.100199

10.1073/pnas.1313452110

10.1038/s41579-020-0412-1

10.1111/j.1365-2745.2008.01384.x

10.1016/j.soilbio.2017.01.006

10.1007/s00572-006-0093-2

10.1016/j.tplants.2016.01.008

10.1111/nph.13288

10.1371/journal.pbio.2006352

10.1111/j.1469-8137.2012.04190.x

10.1890/08-0127.1

10.1073/pnas.1820691116

10.1038/nplants.2015.159

10.1080/03650340.2019.1590555

10.1016/j.rhisph.2020.100263

10.1007/s11104-019-04156-0

10.1111/1365-2435.12983

10.1111/1365-2745.13746

10.1007/s11104-019-03972-8

10.1111/nph.14003

10.1111/nph.17590

10.1038/s41438-020-00380-3

10.1007/s11104-017-3214-0

10.1111/nph.15833

10.1007/s11104-021-04988-9

10.1073/pnas.1721629115

10.1093/aob/mct123

10.1111/nph.16223

10.1111/1365‐2745.13630

10.1111/gcb.12161

10.1016/j.soilbio.2014.07.022

10.1016/j.soilbio.2020.107997

10.1093/jxb/erw108

10.1038/s41477-021-00897-y

10.1111/nph.16499

10.1038/s41564-018-0129-3

10.1111/nph.13613

10.1016/j.soilbio.2014.03.004

10.1111/1462-2920.14289