Linking ecosystem services provisioning with demand for animal-sourced food: an integrated modeling study for Tanzania

Dolapo Enahoro1, Marta Kozicka2,3, Catherine Pfeifer4,5, Sarah K. Jones6, Nhuong Tran7, Chin Yee Chan7, Timothy B. Sulser8, Elisabetta Gotor3, Karl M. Rich4,9
1International Livestock Research Institute, c/o, IWMI-Ghana, Cantonments, Ghana
2International Institute for Applied Systems Analysis, Vienna, Austria
3Bioversity International, Rome, Italy
4International Livestock Research Institute, Nairobi, Kenya
5Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
6Bioversity International, Montpellier, France
7WorldFish, Penang, Malaysia
8International Food Policy Research Institute, Washington, D.C., USA
9Ferguson College of Agriculture, Oklahoma State University, Stillwater, USA

Tóm tắt

Standard tools that can quantitatively track the impacts of higher global demand for animal-sourced food to their local environmental effects in developing countries are largely missing. This paper presents a novel integrated assessment framework that links a model of the global agricultural and food system, a landscape-level environmental impact assessment model, and an ecosystem services simulation model. For Tanzania, this integrated assessment showed that a projected increase in the demand and production of foods of livestock origin with optimistic economic growth between 2010 and 2030 leads to an improvement in food security. However, resulting transitions in land use impact negatively on the future provisioning of ecosystem services, increasing phosphorus, nitrogen, and sediment in runoff and reducing water quality in areas downstream of the agricultural expansion. Losses in ecosystem services are lowest when diversified farming practices are adopted in areas of agricultural land expansion. The role of land management in the environmental impacts of expanded livestock production is highlighted, as is the need for a new generation of analytical tools to inform policy recommendations.

Từ khóa


Tài liệu tham khảo

Alonso S, Dominguez-Salas P, Grace D (2019) The role of livestock products for nutrition in the first 1,000 days of life. Anim Front 9(4):24–31. https://doi.org/10.1093/af/vfz033

Balehegn M, Duncan A, Tolera A, Ayantunde AA, Issa S et al (2020) Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob Food Sec 26:100372. https://doi.org/10.1016/j.gfs.2020.100372

Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D (2021) Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Change Biol 27:4697–4710. https://doi.org/10.1111/gcb.15747

Beillouin D, Ben-Ari T, Makowski D (2019) Evidence map of crop diversification strategies at the global scale. Environ Res Lett 14(12). https://doi.org/10.1088/1748-9326/ab5ffb

Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E et al (2018) Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1(5):234–239. https://doi.org/10.1038/s41893-018-0062-8

Castle SE, Miller DC, Ordonez PJ, Baylis K, Hughes K (2021) The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well-being in low- and middle-income countries: a systematic review. Campbell Syst Rev 7(e1167)

Chan CY, Tran N, Pethiyagoda S, Crissman CC, Sulser TB et al (2019) Prospects and challenges of fish for food security in Africa. Glob Food Sec 20:17–25. https://doi.org/10.1016/j.gfs.2018.12.002

Delgado CL, Narrod CA, Tiongco M (2012) Implications of the scaling-up of livestock production in a group of fast-growing developing countries. In: Ahuja, Vinod (ed) Livestock and livelihoods: challenges and opportunities for Asia in the emerging market economy. National Dairy Development Board; Food and Agricultural Organization of the United Nations (FAO), Rome, pp 95–131

Delgado C, Rosegrant M, Meijer S (2001) Livestock to 2020: the revolution continues. Conference paper. In: International trade in livestock products symposium, Auckland, pp 1–38. https://doi.org/10.22004/ag.econ.14560

Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J et al (2019) Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366(6471):eaax3100. https://doi.org/10.1126/science.aax3100

Dumont B, Fortun-Lamothe L, Jouven M, Thomas M, Tichit M (2013) Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 7(6):1028–1043. https://doi.org/10.1017/S1751731112002418

Enahoro D, Lannerstad M, Pfeifer C, Dominguez-Salas P (2018) Contributions of livestock-derived foods to nutrient supply under changing demand in low- and middle-income countries. Glob Food Sec 19:1–10. https://doi.org/10.1016/j.gfs.2018.08.002

Engström K, Olin S, Rounsevell MDA, Brogaard S, Van Vuuren DP et al (2016) Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst Dyn 7(4):893–915. https://doi.org/10.5194/esd-7-893-2016

ESA (2017) Land cover CCI product user guide version 2. Tech.Rep.maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. Accessed 20 Dec 2022

Estell RE, Havstad KM, Cibils AF, Fredrickson EL, Anderson DM et al (2012) Increasing shrub use by livestock in a world with less grass. Rangel Ecol Manag 65(6):553–562. https://doi.org/10.2111/REM-D-11-00124.1

FAO (2020) Food balances 2010–2019: Global, regional and country trends. Food and Agricultural Organization of the United Nations FAOSTAT Analytical Brief 40. https://www.fao.org/3/cb9574en/cb9574en.pdf. Accessed 20 Dec 2022

FAO (2019) The state of the world’s biodiversity for food and agriculture. Bélanger J, Pilling D (eds) FAO commission on genetic resources for food and agriculture assessments, Rome, 572 pp. http://www.fao.org/3/CA3129EN/CA3129EN.pdf. Accessed 20 Dec 2022

Félix GF, Scholberg JMS, Clermont-Dauphin C, Cournac L, Tittonell P (2018) Enhancing agroecosystem productivity with woody perennials in semi-arid West Africa. A meta-analysis. Agron Sustain Dev 386(38):1–21. https://doi.org/10.1007/s13593-018-0533-3

Fischer G, Nachtergaele FO, Prieler S, Teixeira E, Toth G, van Velthuizen H, Verelst L, Wiberg D (2012) Global Agro-ecological Zones (GAEZ v3.0) - Model Documentation. IIASA, Laxenburg, Austria and FAO, Rome, Italy, Laxenburg, Austria, and Rome Italy. https://pure.iiasa.ac.at/13290. Accessed 20 Dec 2022

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. https://doi.org/10.1038/nature1045

Franzel S, Carsan S, Lukuyu B, Sinja J, Wambugu C (2014) Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr Opin Environ Sustain 6:98–103. https://doi.org/10.1016/j.cosust.2013.11.008

Gouel C, Guimbard H (2019) Nutrition transition and the structure of global food demand. Am J Agr Econ 101(2):383–403. https://doi.org/10.1093/AJAE

ILRI (2019) Options for the livestock sector in developing and emerging economies to 2030 and beyond. Meat: the future series. World Economic Forum, Geneva. https://hdl.handle.net/10568/99006. Accessed 20 Dec 2022

Islam S, Cenacchi N, Sulser TB, Gbegbelegbe S, Hareau G et al (2016) Structural approaches to modeling the impact of climate change and adaptation technologies on crop yields and food security. Glob Food Sec 10:63–70. https://doi.org/10.1016/j.gfs.2016.08.003

Johnson JA, Jones SK, Wood SLR, Chaplin-Kramer R, Hawthorne PL et al (2019) Mapping ecosystem services to human well-being: a toolkit to support integrated landscape management for the SDGs. Ecol Appl. https://doi.org/10.1002/eap.1985

Kitalyi A, Nyadzi G, Lutkamu M, Swai R, Gama B (2010) New climate, new agriculture: how agroforestry contributes to meeting the challenges of agricultural development in Tanzania. Tanzan J Agric Sci 10(1):1–7. https://www.ajol.info/index.php/tjags/article/view/102022. Accessed 20 Dec 2022

Kozicka M, Gotor E, Ocimati W, de Jager T, Kikulwe E, Groot JCJ (2020) Responding to future regime shifts with agrobiodiversity: a multi-level perspective on small-scale farming in Uganda. Agric Syst 183. https://doi.org/10.1016/j.agsy.2020.102864

Kozicka M, Jones SK, Gotor E, Enahoro D (2022) Cross-scale trade-off analysis for sustainable development: linking future demand for animal source foods and ecosystem services provision to the SDGs. Sustain Sci 17(1):209–220. https://doi.org/10.1007/s11625-021-01082-y

Kremen C, Iles A, Bacon C (2012) Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc 17(4):art44. https://doi.org/10.5751/ES-05103-170444

Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):art40. https://doi.org/10.5751/ES-05035-170440

Li S, Xu J, Tang S, Zhan Q, Gao Q et al (2020) A meta-analysis of carbon, nitrogen and phosphorus change in response to conversion of grassland to agricultural land. Geoderma 363:114149. https://doi.org/10.1016/j.geoderma.2019.114149

Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27(1):19–26. https://doi.org/10.1016/j.tree.2011.08.006

Msangi S, Enahoro D, Herrero M, Magnan N, Havlik P et al (2014) Integrating livestock feeds and production systems into agricultural multi-market models: the example of IMPACT. Food Policy 49(2):365–377. https://doi.org/10.1016/j.foodpol.2014.10.002

Musokwa M, Mafongoya P, Lorentz S (2019) Evaluation of agroforestry systems for maize (Zea mays) productivity in South Africa. S Afr J Plant Soil 36(1):65–67. https://doi.org/10.1080/02571862.2018.1459898

Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, Robertson R, Tokgoz S, Zhu T, Sulser TB, Ringler C, Msangi S, You L (2010) Food security, farming, and climate change to 2050: scenarios, results, policy options. In: Research reports. International Food Policy Research Institute (IFPRI), Washington, DC. https://doi.org/10.2499/9780896291867

Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H et al (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111(9):3274–3279. https://doi.org/10.1073/pnas.1222465110

Niether W, Jacobi J, Blaser WJ, Andres C, Armengot L (2020) Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environ Res Lett 15(104085). https://doi.org/10.1088/1748-9326/abb053

Notenbaert A, Groot JCJ, Herrero M, Birnholz C, Paul BK, Pfeifer C, Fraval S, Lannerstad M, McFadzean JN, Dungait JAJ, Morris J, Ran Y, Barron J, Tittonell P (2020) Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Reg Environ Chang 20(138). https://doi.org/10.1007/s10113-020-01723-5

Pfeifer C, Morris J, Ensor J (2019) The CLEANED-R tool: generic manual. Stockholm Environment Institute, York, UK. https://hdl.handle.net/10568/106139. Accessed 20 December 2022

Popkin BM (2004) The nutrition transition: an overview of world patterns of change. Nutr Rev 62:S140–S143

Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

Ricker-Gilbert J (2020) Inorganic fertiliser use among smallholder farmers in sub-Saharan Africa: implications for input subsidy policies. In Gomez y Paloma S, Riesgo L, Louhichi K (eds) The role of smallholder farms in food and nutrition security. Springer International Publishing, Cham, pp 81–98. https://doi.org/10.1007/978-3-030-42148-9_5

Robinson S, Mason d’Croz D, Islam S, Sulser TB, Robertson RD, Zhu T, Gueneau A, Pitois G, Rosegrant MW (2015) The international model for policy analysis of agricultural commodities and trade (IMPACT): model description for version 3. In: IFPRI discussion paper 1483. International Food Policy Research Institute (IFPRI), Washington, D.C. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129825. Accessed 20 Dec 2022

Rosa-Schleich J, Loos J, Mußhoff O, Tscharntke T (2019) Ecological-economic trade-offs of diversified farming systems – a review. Ecol Econ 160:251–263. https://doi.org/10.1016/J.ECOLECON.2019.03.002

Ruckelshaus M, McKenzie E, Tallis H, Guerry A, Daily G et al (2013) Notes from the field: lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol Econ 115:11–21. https://doi.org/10.1016/j.ecolecon.2013.07.009

Schroth G, Ruf F (2014) Farmer strategies for tree crop diversification in the humid tropics. A review. Agron Sustain Dev 34:139–154. https://doi.org/10.1007/s13593-013-0175-4

Sileshi G, Akinnifesi FK, Ajayi OC, Place F (2008) Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 307(1):1–19. https://doi.org/10.1007/s11104-008-9547-y

Springmann M, Wiebe K, Mason-D’Croz D, Sulser TB, Rayner M et al (2018) Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Health 2(10):e451–e461. https://doi.org/10.1016/S2542-5196(18)30206-7

Staton T, Breeze TD, Walters RJ, Smith J, Girling RD (2022) Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecol Econ 191(107214). https://doi.org/10.1016/j.ecolecon.2021.107214

Tallis H, Polasky S (2009) Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann N Y Acad Sci 1162:265–283. https://doi.org/10.1111/j.1749-6632.2009.04152.x

Teague R, Kreuter U (2020) Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front Sustain Food Syst 29(4):157. https://doi.org/10.3389/fsufs.2020.534187

Thilsted SH, Thorne-Lyman A, Webb P, Bogard JR, Subasinghe R et al (2016) Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61:126–131. https://doi.org/10.1016/j.foodpol.2016.02.005

Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. https://doi.org/10.1038/nature13959

van Soesbergen A, Arnell AP, Sassen M, Stuch B, Schaldach R et al (2017) Exploring future agricultural development and biodiversity in Uganda, Rwanda and Burundi: a spatially explicit scenario- based assessment. Reg Environ Chang 17:1409–1420. https://doi.org/10.1007/s10113-016-0983-6

van Zeist W-J, Stehfest E, Doelman JC, Valin V, Calvin K, Fujimori S, Hasegawa T, Havlik P, Humpenöder F, Kyle P, Lotze-Campen H, Mason-D’Croz D, van Meijl H, Popp A, Sulser TB, Tabeau A, Verhagen W, Wiebe K (2020) Are scenario projections overly optimistic about future yield progress? Glob Environ Chang 64:102120. https://doi.org/10.1016/j.gloenvcha.2020.102120

Vince A (2002) A framework for the greedy algorithm. Discret Appl Math 121(1):247–260. https://doi.org/10.1016/S0166-218X(01)00362-6

Wang P, Tran N, Enahoro D, Chan CY, Shikuku KM et al (2021) Spatial and temporal patterns of consumption of animal-source foods in Tanzania. Agribusiness 38(2):328–348. https://doi.org/10.1002/agr.21729

Wiebe K, Lotze-Campen H, Sands R, Tabeau A, van der Mensbrugghe D, Biewald A, Bodirsky B, Islam S, Kavallari A, Mason-D′Croz D, Müller C, Popp A, Robertson R, Robinson S, van Meijl H, Willenbockel D (2015) Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ Res Lett 10:085010–085010. https://doi.org/10.1088/1748-9326/10/8/085010

Willett W, Rockström J, Loken B, Springmann M, Lang T et al (2019) Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393(10170):447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Wolff S, Schulp CJE, Verburg PH (2015) Mapping ecosystem services demand: a review of current research and future perspectives. Ecol Indic 55:159–171. https://doi.org/10.1016/j.ecolind.2015.03.016

Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W et al (2019) Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Commun 10(1):2844. https://doi.org/10.1038/s41467-019-10775-z