Phát hiện Dự đoán Tuyến tính cho Giao tiếp Qua Dòng Điện Bị Ảnh Hưởng Bởi Nhiễu Màu

EURASIP Journal on Advances in Signal Processing - Tập 2007 - Trang 1-12 - 2007
Riccardo Pighi1, Riccardo Raheli1
1Dipartimento di Ingegneria dell’Informazione, Università di Parma, Parma, Italy

Tóm tắt

Các thuật toán phát hiện mạnh mẽ có khả năng giảm thiểu tác động của nhiễu màu là mục tiêu chính trong các hệ thống truyền thông hoạt động trên các kênh dòng điện. Trong bài báo này, chúng tôi trình bày một sơ đồ phát hiện chuỗi dựa trên dự đoán tuyến tính để áp dụng trong giao tiếp một sóng qua dòng điện bị suy giảm bởi nhiễu màu. Sự hiện diện của nhiễu màu và nhu cầu về độ đủ thống kê yêu cầu thiết kế một giai đoạn đầu vào tối ưu, trong khi nhu cầu về một giải pháp có độ phức tạp thấp gợi ý về một đầu vào không tối ưu nhưng thực tiễn hơn. Hiệu suất của các bộ thu sử dụng cả đầu vào tối ưu và không tối ưu đã được đánh giá thông qua phân tích sai số dự đoán bình phương trung bình tối thiểu (MMSPE) và mô phỏng tỷ lệ lỗi bit (BER). Chúng tôi chỉ ra rằng giải pháp tối ưu được đề xuất cải thiện hiệu suất BER so với các hệ thống thông thường và làm cho bộ thu trở nên mạnh mẽ hơn đối với nhiễu màu. Như một nghiên cứu tình huống, chúng tôi điều tra hiệu suất của các bộ thu được đề xuất trong một kênh dòng điện áp thấp (LV) bị giới hạn bởi nhiễu nền màu và trong một kênh dòng điện áp cao (HV) bị giới hạn bởi nhiễu corona.

Từ khóa

#nhiễu màu #giao tiếp qua dòng điện #phát hiện dự đoán tuyến tính #tỷ lệ lỗi bit #phân tích sai số dự đoán

Tài liệu tham khảo

Ferreira HC, Grove HM, Hooijen O, Vinck AJH: Power line communications: an overview. Proceedings of the 4th IEEE AFRICON Conference, September 1996, Stellenbosch, South Africa 2: 558–563. Biglieri E: Coding and modulation for a horrible channel. IEEE Communications Magazine 2003,41(5):92-98. 10.1109/MCOM.2003.1200107 Galli S, Scaglione A, Dostert K: Broadband is power: internet access through the power line network. IEEE Communications Magazine 2003,41(5):82-83. 10.1109/MCOM.2003.1200105 Liu W, Widmer H, Raffin P: Broadband PLC access systems and field deployment in European power line networks. IEEE Communications Magazine 2003,41(5):114–118. 10.1109/MCOM.2003.1200110 Barmada S, Musolino A, Raugi M: Innovative model for time-varying power line communication channel response evaluation. IEEE Journal on Selected Areas in Communications 2006,24(7):1317-1326. Galli S, Banwell TC: A deterministic frequency-domain model for the indoor power line transfer function. IEEE Journal on Selected Areas in Communications 2006,24(7):1304-1316. Philipps H: Modelling of power line communication channels. Proceedings of the 3rd International Symposium on Power-Line Communications and Its Applications (ISPLC '99), March-April 1999, Lancaster, UK 14–21. Zimmermann M, Dostert K: A multipath model for the power line channel. IEEE Transactions on Communications 2002,50(4):553-559. 10.1109/26.996069 Amirshahi P, Kavehrad M: High-frequency characteristics of overhead multiconductor power lines for broadband communications. IEEE Journal on Selected Areas in Communications 2006,24(7):1292-1303. Meng H, Guan YL, Chen S: Modeling and analysis of noise effects on broadband power line communications. IEEE Transactions on Power Delivery 2005,20(2, part 1):630-637. 10.1109/TPWRD.2005.844349 Götz M, Rapp M, Dostert K: Power line channel characteristics and their effect on communication system design. IEEE Communications Magazine 2004,42(4):78-86. Degardin V, Lienard M, Zeddam A, Gauthier F, Degauque P: Classification and characterization of impulsive noise on indoor power line used for data communications. IEEE Transactions on Consumer Electronics 2002,48(4):913-918. Mujčić A, Suljanović N, Zajc M, Tasič JF: Power line noise model appropriate for investigation if channel coding methods. Proceedings of the International Conference on Computer as a Tool (EUROCON '03), September 2003, Ljubljana, Slovenia 1: 299–303. Middleton D: Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility 1977,19(3, part 1):106-127. Middleton D: Procedures for determining the parameters of the first-order canonical models of class A and class B electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility 1979,21(3):190-208. Ghosh M: Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Transactions on Communications 1996,44(2):145-147. 10.1109/26.486604 Zimmermann M, Dostert K: Analysis and modeling of impulsive noise in broad-band power line communications. IEEE Transactions on Electromagnetic Compatibility 2002,44(1):249-258. 10.1109/15.990732 Suljanović N, Mujčić A, Zajc M, Tasič JF: Computation of high-frequency and time characteristics of corona noise on HV power line. IEEE Transactions on Power Delivery 2005,20(1):71-79. 10.1109/TPWRD.2004.838656 Burrascano P, Cristina S, D'Amore M: Performance evaluation of digital signal transmission channels on coronating power lines. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '88), June 1988, Espoo, Finland 1: 365–368. Burrascano P, Cristina S, D'Amore M: Digital generator of corona noise on power line carrier channels. IEEE Transactions on Power Delivery 1988,3(3):850-856. 10.1109/61.193860 Lodge JH, Moher ML: Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels. IEEE Transactions on Communications 1990,38(6):787-794. 10.1109/26.57471 Makrakis D, Mathiopoulos PT, Bouras DP: Optimal decoding of coded PSK and QAM signals in correlated fast fading channels and AWGN: a combined envelope, multiple differential and coherent detection approach. IEEE Transactions on Communications 1994,42(1):63-75. 10.1109/26.275302 Yu X, Pasupathy S: Innovations-based MLSE for Rayleigh fading channels. IEEE Transactions on Communications 1995,43(2–4):1534-1544. Vitetta GM, Taylor DP: Maximum likelihood decoding of uncoded and coded PSK signal sequences transmitted over Rayleigh flat-fading channels. IEEE Transactions on Communications 1995,43(11):2750-2758. 10.1109/26.481226 Eleftheriou E, Hirt W: Improving performance of PRML/EPRML through noise prediction. IEEE Transactions on Magnetics 1996,32(5, part 1):3968-3970. 10.1109/20.539233 Eyuboglu MV, Qureshi SUH: Reduced-state sequence estimation with set partitioning and decision feedback. IEEE Transactions on Communications 1988,36(1):13-20. 10.1109/26.2724 Duel-Hallen A, Heegard C: Delayed decision-feedback sequence estimation. IEEE Transactions on Communications 1989,37(5):428-436. 10.1109/26.24594 Chevillat PR, Eleftheriou E: Decoding of trellis-encoded signals in the presence of intersymbol interference and noise. IEEE Transactions on Communications 1989,37(7):669-676. 10.1109/26.31158 Raheli R, Polydoros A, Tzou C-K: Per-survivor processing: a general approach to MLSE in uncertain environments. IEEE Transactions on Communications 1995,43(2–4):354-364. Ferrari G, Colavolpe G, Raheli R: Detection Algorithms for Wireless Communications, with Applications to Wired and Storage Systems. John Wiley & Sons, London, UK; 2004. Pighi R, Raheli R: Linear predictive detection for power line communications impaired by colored noise. Proceedings of IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '06), March 2006, Orlando, Fla, USA 337–342. Wei L-F: Trellis-coded modulation with multidimensional constellations. IEEE Transactions on Information Theory 1987,33(4):483-501. 10.1109/TIT.1987.1057329 Simon MK, Hinedi SM, Lindsey WC: Digital Communication Techniques: Signal Design and Detection. Prentice Hall-PTR, Englewood Cliffs, NJ, USA; 1994. Ungerboeck G: Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory 1982,28(1):55-67. 10.1109/TIT.1982.1056454 Ferrari G, Colavolpe G, Raheli R: A unified framework for finite-memory detection. IEEE Journal on Selected Areas in Communications 2005,23(9):1697-1706. Haykin S: Adaptive Filter Theory. 4th edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 2001. Philipps H: Performance measurements of power line channels at high frequencies. Proceedings of the International Symposium on Power-Line Communications and Its Applications (ISPLC '98), March 1998, Tokyo, Japan 229–237. Smith AA Jr.: Power line noise survey. IEEE Transactions on Electromagnetic Compatibility 1972,14(1):31-32. Esmailian T, Kschischang FR, Gulak PG: Characteristics of in-building power lines at high frequencies and their channel capacity. Proceedings of the International Symposium on Power-Line Communications and Its Applications (ISPLC '00), April 2000, Limerick, Ireland 52–59. Katayama M, Yamazato T, Okada H: A mathematical model of noise in narrowband power line communication systems. IEEE Journal on Selected Areas in Communications 2006,24(7):1267-1276. Maruvada PS: Corona Performance on High-Voltage Transmission Lines. Research Studies Press, Baldock, UK; 2000. Suljanović N, Mujčić A, Zajc M, Tasič JF: Corona noise characteristics in high voltage PLC channel. Proceedings of the IEEE International Conference on Industrial Technology (ICIT '03), December 2003, Maribor, Slovenia 2: 1036–1039. Cristina S, D'Amore M: Analytical method for calculating corona noise on HVAC power line carrier communication channels. IEEE Transactions on Power Apparatus and Systems 1985,104(5):1017-1024. Burrascano P, Cristina S, D'Amore M: Digital generator of corona noise on power line carrier channels. IEEE Power Systems Conference and Exposition (PSCE '87), July 1987, San Francisco, Calif, USA Burg JP: Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, 1967, Oklahoma City, Okla, USA 34–41.