Limited predictability of amikacin clearance in extreme premature neonates at birth

British Journal of Clinical Pharmacology - Tập 61 Số 1 - Trang 39-48 - 2006
Karel Allegaert1, Brian J. Anderson2, Veerle Cossey1, Nicholas H. G. Holford3
1Neonatal Intensive Care Unit, University Hospital Gasthuisberg, Leuven, Belgium
2Department of Anaesthesiology and
3Department of Pharmacology & Clinical Pharmacology, University of Auckland, New Zealand

Tóm tắt

Aim

Identify and quantify factors describing variability of amikacin clearance in preterm neonates at birth.

Methods

Population pharmacokinetics of amikacin were estimated in a cohort of 205 extreme preterm neonates [post conception age (PCA) 27.8, SD 1.8, range 24–30 weeks; weight 1.07, SD 0.34, range 0.45–1.98 kg, postnatal age < 72 h]. Covariate analysis included weight, PCA, Apgar score, prophylactic administration of a nonsteroidal anti‐inflammatory drug (NSAID) to the neonate, maternal indomethacin and betamethasone administration, and chorioamnionitis.

Results

A one‐compartment linear disposition model with zero order input (0.3 h i.v. infusion) and first‐order elimination was used. The population parameter estimate for volume of distribution (V) was 40.2 l per 70 kg. Clearance (CL) increased from 0.486 l h−1 per 70 kg at 24 weeks PCA to 0.940 l h−1 per 70 kg by 30 weeks PCA. The population parameter variability (PPV) for CL and V was 0.336 and 0.451. The use of a NSAID (either aspirin or ibuprofen) in the first day of life reduced amikacin clearance by 22%. Overall 65% of the variability of CL was predictable. Weight explained 48%, PCA 15% and NSAIDs 2%.

Conclusions

Size and post‐conception age are the major contributors to clearance variability in extreme premature neonates (<31 weeks PCA). The large (35% of total) unexplained variability in clearance reinforces the need for target concentration intervention to reduce variability in exposure to a safe and effective range.

Từ khóa


Tài liệu tham khảo

10.1007/BF00180064

10.1093/infdis/155.1.93

10.1159/000014053

10.1159/000457566

10.1128/AAC.46.5.1381-1387.2002

10.1007/s002280100355

10.1111/j.1365-2125.2004.02114.x

10.1016/S0140-6736(04)17477-1

10.1159/000079618

Sheiner LB, 1979, NONMEM Users Guide.

10.1046/j.1460-9592.2002.00616.x

10.2165/00003088-199630050-00001

10.1126/science.276.5309.122

10.1126/science.284.5420.1677

Peters HP., 1983, The Ecological Implications of Body Size, 48, 10.1017/CBO9780511608551

Prins JM, 1996, Validation and nephrotoxicity of a simplified once‐daily aminoglycoside dosing schedule and guidelines for monitoring therapy, Antimicrob Agents Chemother, 40, 2494, 10.1128/AAC.40.11.2494

De Hoog M, 2005, Neonatal and Pediatric Pharmacology, 377

10.1046/j.1365-2125.1999.00971.x

10.1128/AAC.31.4.570

10.1016/0024-3205(88)90281-0

Padovani EM, 1993, Pharmacokinetics of amikacin in neonates, Dev Pharmacol Ther, 20, 167, 10.1159/000457558

10.1128/AAC.34.2.265

10.1136/fn.89.1.F3-a

10.1038/clpt.1985.245

Bergstein JM., 2000, Nelson Textbook of Pediatrics, 1574

10.1016/0009-9236(95)90021-7

10.1016/S0022-3476(78)80133-4

10.1053/sper.2002.37310

10.1007/s00467-005-1842-8

10.1007/s00467-005-1998-2

10.1203/00006450-199411000-00006

10.1067/mob.2003.36

MacKintosh D, 1985, Effects of prenatal glucocorticoids on renal maturation in newborn infants, Dev Pharmacol Ther, 8, 107, 10.1159/000457028

10.1046/j.1365-2125.2000.00231.x

10.1093/bja/aeh042

10.1542/peds.28.2.169

10.1111/j.1365-2125.2005.02260.x

Philips JB 3rd, 1983, The accuracy of amikacin administration in neonates, Pediatr Pharmacol (New York), 3, 127

Reilly KM., 1987, Problems in administration techniques and dose measurement that influence accuracy of i.v. drug delivery, Am J Hosp Pharm, 44, 2545

10.1177/106002809502901104

10.1097/00006454-199309000-00002

10.1097/00007691-198901000-00008

10.1016/S0924-8579(02)00023-7

10.2165/00003088-199834040-00001

10.1097/00007691-199902000-00010