Limit theorems for weighted Bernoulli random fields under Hannan’s condition

Stochastic Processes and their Applications - Tập 126 - Trang 1819-1838 - 2016
Jana Klicnarová1, Dalibor Volný2, Yizao Wang3
1Faculty of Economics, University of South Bohemia, Studentská 13, 370 05 České Budějovice, Czech Republic
2Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, 76801, Saint Etienne du Rouvray, France
3Department of Mathematical Sciences, University of Cincinnati, 2815 Commons Way, Cincinnati, OH, 45221-0025, United States

Tài liệu tham khảo

Alexander, 1986, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab., 14, 582, 10.1214/aop/1176992532 Basu, 1979, On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hungar., 33, 307, 10.1007/BF01902565 Berkes, 2014, Komlós–Major–Tusnády approximation under dependence, Ann. Probab., 42, 794, 10.1214/13-AOP850 Biermé, 2014, Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc., 366, 5963, 10.1090/S0002-9947-2014-06135-7 H. Biermé, O. Durieu, Y. Wang, Invariance principles for operator-scaling Gaussian random fields, 2015, submitted for publication. Available at http://arxiv.org/abs/1504.04891. Billingsley, 1968 Bolthausen, 1982, On the central limit theorem for stationary mixing random fields, Ann. Probab., 10, 1047, 10.1214/aop/1176993726 Bradley, 2007 Cuny, 2013, A quenched invariance principle for stationary processes, ALEA Lat. Am. J. Probab. Math. Stat., 10, 107 Dedecker, 1998, A central limit theorem for stationary random fields, Probab. Theory Related Fields, 110, 397, 10.1007/s004400050153 Dedecker, 2001, Exponential inequalities and functional central limit theorems for a random fields, ESAIM Probab. Stat., 5, 77, 10.1051/ps:2001103 Dedecker, 2011, Invariance principles for linear processes with application to isotonic regression, Bernoulli, 17, 88, 10.3150/10-BEJ273 Dedecker, 2007, On the weak invariance principle for non-adapted sequences under projective criteria, J. Theoret. Probab., 20, 971, 10.1007/s10959-007-0090-1 Dedecker, 2000, On the functional central limit theorem for stationary processes, Ann. Inst. H. Poincaré Probab. Statist., 36, 1, 10.1016/S0246-0203(00)00111-4 Durieu, 2009, Independence of four projective criteria for the weak invariance principle, ALEA Lat. Am. J. Probab. Math. Stat., 5, 21 Durieu, 2008, Comparison between criteria leading to the weak invariance principle, Ann. Inst. H. Poincaré Probab. Statist., 44, 324, 10.1214/07-AIHP123 El Machkouri, 2013, A central limit theorem for stationary random fields, Stochastic Process. Appl., 123, 1, 10.1016/j.spa.2012.08.014 Hannan, 1973, Central limit theorems for time series regression, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 26, 157, 10.1007/BF00533484 Heinrich, 1988, Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster processes, Math. Nachr., 136, 131, 10.1002/mana.19881360109 Khoshnevisan, 2002 Lavancier, 2005, Processus empirique de fonctionnelles de champs gaussiens à longue mémoire, Pub. IRMA Lille., 63, 1 Ledoux, 1991, vol. 23 Machkouri, 2016, Orthomartingale-coboundary decomposition for stationary random fields, Stoch. Dyn. Maxwell, 2000, Central limit theorems for additive functionals of Markov chains, Ann. Probab., 28, 713, 10.1214/aop/1019160258 Merlevède, 2006, Recent advances in invariance principles for stationary sequences, Probab. Surv., 3, 1, 10.1214/154957806100000202 Morkvėnas, 1984, The invariance principle for martingales in the plane, Litov. Fiz. Sb., 24, 127 Nahapetian, 1995, Billingsley–Ibragimov theorem for martingale-difference random fields and its applications to some models of classical statistical physics, C. R. Acad. Sci., Paris I, 320, 1539 Peligrad, 1997, Central limit theorem for linear processes, Ann. Probab., 25, 443, 10.1214/aop/1024404295 Peligrad, 2006, Central limit theorem for stationary linear processes, Ann. Probab., 34, 1608, 10.1214/009117906000000179 Poghosyan, 1998, Invariance principle for martingale-difference random fields, Statist. Probab. Lett., 38, 235, 10.1016/S0167-7152(98)00020-0 Rio, 2009, Moment inequalities for sums of dependent random variables under projective conditions, J. Theoret. Probab., 22, 146, 10.1007/s10959-008-0155-9 Truquet, 2010, A moment inequality of the Marcinkiewicz–Zygmund type for some weakly dependent random fields, Statist. Probab. Lett., 80, 1673, 10.1016/j.spl.2010.07.011 Volný, 2015, A central limit theorem for fields of martingale differences, C. R. Math. Acad. Sci. Paris, 353 (12), 1159, 10.1016/j.crma.2015.09.017 Volný, 2014, An invariance principle for stationary random fields under Hannan’s condition, Stochastic Process. Appl., 124, 4012, 10.1016/j.spa.2014.07.015 Wang, 2014, An invariance principle for fractional Brownian sheets, J. Theoret. Probab., 27, 1124, 10.1007/s10959-013-0483-2 Wu, 2005, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA, 102, 14150, 10.1073/pnas.0506715102 Wu, 2007, Strong invariance principles for dependent random variables, Ann. Probab., 35, 2294, 10.1214/009117907000000060 Wu, 2011, Asymptotic theory for stationary processes, Stat. Interface, 4, 207, 10.4310/SII.2011.v4.n2.a15