Limit theorems for weighted Bernoulli random fields under Hannan’s condition
Tài liệu tham khảo
Alexander, 1986, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab., 14, 582, 10.1214/aop/1176992532
Basu, 1979, On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hungar., 33, 307, 10.1007/BF01902565
Berkes, 2014, Komlós–Major–Tusnády approximation under dependence, Ann. Probab., 42, 794, 10.1214/13-AOP850
Biermé, 2014, Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc., 366, 5963, 10.1090/S0002-9947-2014-06135-7
H. Biermé, O. Durieu, Y. Wang, Invariance principles for operator-scaling Gaussian random fields, 2015, submitted for publication. Available at http://arxiv.org/abs/1504.04891.
Billingsley, 1968
Bolthausen, 1982, On the central limit theorem for stationary mixing random fields, Ann. Probab., 10, 1047, 10.1214/aop/1176993726
Bradley, 2007
Cuny, 2013, A quenched invariance principle for stationary processes, ALEA Lat. Am. J. Probab. Math. Stat., 10, 107
Dedecker, 1998, A central limit theorem for stationary random fields, Probab. Theory Related Fields, 110, 397, 10.1007/s004400050153
Dedecker, 2001, Exponential inequalities and functional central limit theorems for a random fields, ESAIM Probab. Stat., 5, 77, 10.1051/ps:2001103
Dedecker, 2011, Invariance principles for linear processes with application to isotonic regression, Bernoulli, 17, 88, 10.3150/10-BEJ273
Dedecker, 2007, On the weak invariance principle for non-adapted sequences under projective criteria, J. Theoret. Probab., 20, 971, 10.1007/s10959-007-0090-1
Dedecker, 2000, On the functional central limit theorem for stationary processes, Ann. Inst. H. Poincaré Probab. Statist., 36, 1, 10.1016/S0246-0203(00)00111-4
Durieu, 2009, Independence of four projective criteria for the weak invariance principle, ALEA Lat. Am. J. Probab. Math. Stat., 5, 21
Durieu, 2008, Comparison between criteria leading to the weak invariance principle, Ann. Inst. H. Poincaré Probab. Statist., 44, 324, 10.1214/07-AIHP123
El Machkouri, 2013, A central limit theorem for stationary random fields, Stochastic Process. Appl., 123, 1, 10.1016/j.spa.2012.08.014
Hannan, 1973, Central limit theorems for time series regression, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 26, 157, 10.1007/BF00533484
Heinrich, 1988, Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster processes, Math. Nachr., 136, 131, 10.1002/mana.19881360109
Khoshnevisan, 2002
Lavancier, 2005, Processus empirique de fonctionnelles de champs gaussiens à longue mémoire, Pub. IRMA Lille., 63, 1
Ledoux, 1991, vol. 23
Machkouri, 2016, Orthomartingale-coboundary decomposition for stationary random fields, Stoch. Dyn.
Maxwell, 2000, Central limit theorems for additive functionals of Markov chains, Ann. Probab., 28, 713, 10.1214/aop/1019160258
Merlevède, 2006, Recent advances in invariance principles for stationary sequences, Probab. Surv., 3, 1, 10.1214/154957806100000202
Morkvėnas, 1984, The invariance principle for martingales in the plane, Litov. Fiz. Sb., 24, 127
Nahapetian, 1995, Billingsley–Ibragimov theorem for martingale-difference random fields and its applications to some models of classical statistical physics, C. R. Acad. Sci., Paris I, 320, 1539
Peligrad, 1997, Central limit theorem for linear processes, Ann. Probab., 25, 443, 10.1214/aop/1024404295
Peligrad, 2006, Central limit theorem for stationary linear processes, Ann. Probab., 34, 1608, 10.1214/009117906000000179
Poghosyan, 1998, Invariance principle for martingale-difference random fields, Statist. Probab. Lett., 38, 235, 10.1016/S0167-7152(98)00020-0
Rio, 2009, Moment inequalities for sums of dependent random variables under projective conditions, J. Theoret. Probab., 22, 146, 10.1007/s10959-008-0155-9
Truquet, 2010, A moment inequality of the Marcinkiewicz–Zygmund type for some weakly dependent random fields, Statist. Probab. Lett., 80, 1673, 10.1016/j.spl.2010.07.011
Volný, 2015, A central limit theorem for fields of martingale differences, C. R. Math. Acad. Sci. Paris, 353 (12), 1159, 10.1016/j.crma.2015.09.017
Volný, 2014, An invariance principle for stationary random fields under Hannan’s condition, Stochastic Process. Appl., 124, 4012, 10.1016/j.spa.2014.07.015
Wang, 2014, An invariance principle for fractional Brownian sheets, J. Theoret. Probab., 27, 1124, 10.1007/s10959-013-0483-2
Wu, 2005, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA, 102, 14150, 10.1073/pnas.0506715102
Wu, 2007, Strong invariance principles for dependent random variables, Ann. Probab., 35, 2294, 10.1214/009117907000000060
Wu, 2011, Asymptotic theory for stationary processes, Stat. Interface, 4, 207, 10.4310/SII.2011.v4.n2.a15
