Limit theorems for symmetric random walks and probabilistic approximation of the Cauchy problem solution for Schrödinger type evolution equations
Tài liệu tham khảo
Albeverio, 2008, vol. 523
Albeverio, 2011, The probabilistic representation of the exponent of a class of pseudo-differential operators, J. Glob. Stoch. Anal., 1, 123
Beghin, 2005, The distribution of the local time for “pseudoprocess” and its connection with fractional diffusion equatios, Stochastic Process. Appl., 115, 1017, 10.1016/j.spa.2005.02.001
Billingsley, 1968
Chebotarev, 1978, Representation of solution of the Schrödinger equation in the form of mathematical expectation of a functional of a transition process, Math. Notes, 24, 873, 10.1007/BF01141547
Chebotarev, 2004, Deviation estimates for random walks and stochastic methods for solving the Schrödinger equation, Math. Notes, 76, 564, 10.1023/B:MATN.0000043486.02521.da
Daletskii, 1984
Doss, 1980, Sur une Résolution stochastique de l’Equation de Schrödinger à coefficients analytiques, Comm. Math. Phys., 73, 247, 10.1007/BF01197701
Friedman, 1964
Glimm, 1984
Ibragimov, 2013, A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation ∂u∂t=σ22Δu with complex σ, Zap. Nauchn. Sem. POMI, 420, 88
Ibragimov, 2013, On a probabilistic method of solving a one-dimensional initial–boundary value problem, Theory Probab. Appl., 58, 242, 10.1137/S0040585X97986503
Ibragimov, 2013, Probabilistic approximation of solutions of the Cauchy problem for some evolution equations, J. Math. Sci. (NY), 188, 700, 10.1007/s10958-013-1161-8
Ibragimov, 2014, The probabilistic approximation of the Dirichlet initial boundary value problem solution for the equation ∂u∂t=σ22Δu with a complex parameter σ, J. Markov Process. Relat. Fields, 20, 391
Lachal, 2008, First hitting time and place for the pseudo-processes driven by the equation ∂∂t=±∂N∂xN subject to a linear drift, Stochastic Process. Appl., 118, 1, 10.1016/j.spa.2007.03.009
Maslov, 1976
Nikolsky, 1977
Reed, 1975, vol. 2
Thaler, 2003, Solution of Schrödinger equations on compact Lie groups via probabilistic methods, Potential Anal., 18, 119, 10.1023/A:1020548720016