Limit theorems for symmetric random walks and probabilistic approximation of the Cauchy problem solution for Schrödinger type evolution equations

Stochastic Processes and their Applications - Tập 125 - Trang 4455-4472 - 2015
I.A. Ibragimov1,2, N.V. Smorodina3, M.M. Faddeev3
1St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 27 Fontanka, St. Petersburg, 191023, Russia
2St. Petersburg State University, Mathematics and Mechanics Faculty, Universitetsky pr. 28, Petrodvorets, St. Petersburg, 198504, Russia
3St. Petersburg State University, Physical Faculty, Ulianovskaya st. 3, Petrodvorets, St. Petersburg, 198504, Russia

Tài liệu tham khảo

Albeverio, 2008, vol. 523 Albeverio, 2011, The probabilistic representation of the exponent of a class of pseudo-differential operators, J. Glob. Stoch. Anal., 1, 123 Beghin, 2005, The distribution of the local time for “pseudoprocess” and its connection with fractional diffusion equatios, Stochastic Process. Appl., 115, 1017, 10.1016/j.spa.2005.02.001 Billingsley, 1968 Chebotarev, 1978, Representation of solution of the Schrödinger equation in the form of mathematical expectation of a functional of a transition process, Math. Notes, 24, 873, 10.1007/BF01141547 Chebotarev, 2004, Deviation estimates for random walks and stochastic methods for solving the Schrödinger equation, Math. Notes, 76, 564, 10.1023/B:MATN.0000043486.02521.da Daletskii, 1984 Doss, 1980, Sur une Résolution stochastique de l’Equation de Schrödinger à coefficients analytiques, Comm. Math. Phys., 73, 247, 10.1007/BF01197701 Friedman, 1964 Glimm, 1984 Ibragimov, 2013, A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation ∂u∂t=σ22Δu with complex σ, Zap. Nauchn. Sem. POMI, 420, 88 Ibragimov, 2013, On a probabilistic method of solving a one-dimensional initial–boundary value problem, Theory Probab. Appl., 58, 242, 10.1137/S0040585X97986503 Ibragimov, 2013, Probabilistic approximation of solutions of the Cauchy problem for some evolution equations, J. Math. Sci. (NY), 188, 700, 10.1007/s10958-013-1161-8 Ibragimov, 2014, The probabilistic approximation of the Dirichlet initial boundary value problem solution for the equation ∂u∂t=σ22Δu with a complex parameter σ, J. Markov Process. Relat. Fields, 20, 391 Lachal, 2008, First hitting time and place for the pseudo-processes driven by the equation ∂∂t=±∂N∂xN subject to a linear drift, Stochastic Process. Appl., 118, 1, 10.1016/j.spa.2007.03.009 Maslov, 1976 Nikolsky, 1977 Reed, 1975, vol. 2 Thaler, 2003, Solution of Schrödinger equations on compact Lie groups via probabilistic methods, Potential Anal., 18, 119, 10.1023/A:1020548720016