Lignin Valorization: Improving Lignin Processing in the Biorefinery

Arthur J. Ragauskas1, Gregg T. Beckham2, Mary J. Biddy2, Richard P. Chandra3, Fang Chen4, Mark F. Davis5, Brian H. Davison6, Richard A. Dixon4, Paul Gilna6, Martin Keller7, Paul Langan8, Amit K. Naskar9, Feng Jiang3, Timothy J. Tschaplinski6, Gerald A. Tuskan6, Charles E. Wyman10
1BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
2National Bioenergy Center and National Advanced Biofuels Consortium, National Renewable Energy Laboratory (NREL), Golden, CO 80402, USA.
3Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
4BioEnergy Science Center, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
5BioEnergy Science Center and National Advanced Biofuels Consortium, National Renewable Energy Laboratory, Golden, CO 80402, USA.
6BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.
7Energy and Environmental Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
8Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
9Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
10BioEnergy Science Center, Center for Environmental Research and Technology and Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92507, USA.

Tóm tắt

Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

Từ khóa


Tài liệu tham khảo

T. F. Stocker et al . Eds. Climate Change 2013: The Physical Science Basis Summary for Policymakers (IPCC Geneva 2014); www.ipcc.ch/report/ar5/wg1/docs/WGIAR5_SPM_brochure_en.pdf.

10.1016/j.enpol.2004.03.026

U.S. Department of Energy Office of the Biomass Program 30 x 30 Workshop Washington DC (2014); www.30x30workshop.biomass.govtools.us.

U.S. Department of Energy Office of the Biomass Program (OBP) Biomass Multi-Year Program Plan (2014); www1.eere.energy.gov/bioenergy/pdfs/mypp_april_2011.pdf.

R. D. Perlack B. J. Stokes U.S. Department of Energy U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry (Oak Ridge National Laboratory Report ORNL/TM-2011/224 Oak Ridge TN 2011).

10.1016/j.rser.2004.02.003

10.1126/science.1137016

www1.eere.energy.gov/bioenergy/integrated_biorefineries.html (2014).

J. Lane Beta renewables: Biofuels digest’s 2014 5-minute guide. Biofuels Digest (2014); www.biofuelsdigest.com/bdigest/2014/02/24/beta-renewables-biofuels-digests-2014-5-minute-guide.

10.1002/btpr.1575

10.1166/jbmb.2011.1170

10.1146/annurev.arplant.54.031902.134938

10.1021/ef700631w

10.1126/science.1218930

Langholtz M., et al.., Lignin-derived carbon fiber as a co-product of refining cellulosic biomass. SAE Int. J. Mater. Manf 7, 115–121 (2014).

10.1016/j.indcrop.2007.07.008

10.1073/pnas.0505749102

10.1007/s12155-009-9041-2

10.1016/S1369-5266(02)00257-1

10.1126/science.1241602

10.1038/nature13084

10.1105/tpc.112.102574

10.1186/1754-6834-6-46

10.1073/pnas.0831166100

10.1046/j.1365-313X.2002.01221.x

10.1111/j.1469-8137.2011.03922.x

10.1105/tpc.112.101287

10.1038/nbt1316

10.1073/pnas.1117873108

10.1105/tpc.110.074161

10.1016/j.copbio.2012.11.004

10.1038/nbt0707-746

Grabber J. H., How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820–831 (2005).

10.3389/fpls.2013.00050

10.1046/j.1365-313X.2002.01267.x

10.1074/jbc.M110.137315

10.1111/j.1365-313X.2010.04391.x

10.1111/tpj.12012

10.1073/pnas.1120992109

10.1111/j.1467-7652.2012.00692.x

10.1105/tpc.113.113142

10.1104/pp.119.1.153

10.1104/pp.109.136408

10.1073/pnas.1312234110

10.1111/j.1469-8137.2012.04337.x

10.1126/science.1250161

10.1186/1754-6834-3-27

10.1007/s00425-007-0558-3

10.1073/pnas.1009252108

10.1111/nph.12014

10.1111/j.1469-8137.2005.01496.x

10.1073/pnas.1016436107

10.1007/978-1-60761-214-8_12

Y. Zeng M. E. Himmel S. Y. Ding Biomass Conversion Methods and Protocols vol. 908 of Methods in Molecular Biology (Springer New York 2012) pp. 49–60.

10.1002/anie.201205243

10.1021/ac200903y

10.1111/tpj.12299

10.1007/s00425-012-1784-x

10.1089/ind.2012.0017

C. Heitner D. R. Dimmel J. A. Schmidt Eds. Lignin and Lignans: Advances in Chemistry (CRC Boca Raton FL 2010).

10.1186/1754-6834-5-38

10.1111/tpj.12124

10.1186/1754-6834-6-45

10.1021/jf0340411

10.1039/c004817h

10.1104/pp.110.156489

10.1021/bm2014763

10.1007/s00425-011-1359-2

10.1021/bm100455h

10.1021/ja206839u

10.1021/mz300045e

Poursorkhabi V., Misra M., Mohanty A. K., Extraction of lignin from a co-product of the cellulosic ethanol industry and its thermal characterization. BioResources 8, 5083–5101 (2013).

10.1016/j.indcrop.2013.08.002

D. Humbird et al . “Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover ” Technical Report NREL/TP-5100-47764 National Renewable Energy Laboratory Golden CO (2012).

P. Sannigrahi A. J. Ragauskas “Fundamentals of biomass pretreatment by fractionation ” in Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals C. E. Wyman Ed. (Wiley Oxford 2013) pp. 201–222.

10.1007/s12155-012-9208-0

10.1186/1754-6834-6-110

10.1186/1754-6834-5-49

10.1007/s00253-009-1883-1

10.1016/j.cej.2008.07.036

10.1016/j.jbiotec.2006.02.021

10.1016/j.biortech.2011.07.081

10.1021/jf3051939

10.1016/j.biortech.2013.01.081

10.1021/bp025654l

Assessment of Fuel Economy Technologies for Light-Duty Vehicles (National Research Council National Academies Press Washington DC 2011).

10.1002/app.39273

10.1002/app.38588

10.1016/j.biombioe.2013.04.023

D. Argyropoulos U.S. Patent US 20130255216 A1 20131003 (2013).

10.1021/am401661f

10.1016/j.carbon.2004.09.027

10.1103/PhysRevB.77.144209

10.1063/1.883020

10.1016/j.carbon.2012.09.006

10.1007/s12155-009-9056-8

10.1680/gmat.12.00009

J. Lora “Industrial commercial lignins: sources properties and applications ” in Monomers Polymers and Composites from Renewable Resources M. N. Belgacem A. Gandini Eds. (Elsevier Oxford 2008) pp. 225–241.

10.1016/j.jpowsour.2008.10.090

DeAngelis F., Reale S., Review – The lignin concept. Chim'Ind-Mila 88, 58–65 (2006).

10.1080/02773813.2011.652795

10.1016/0032-3861(88)90010-9

10.1016/j.polymer.2013.12.070

10.1002/ceat.201000270

Zakzeski J., Bruijnincx P. C. A., Jongerius A. L., Weckhuysen B. M., The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010). 2021854720218547

10.1021/cs400069z

10.1039/c2cs35188a

10.4155/bfs.12.5

Martínez Á. T., Speranza M., Ruiz-Dueñas F. J., Ferreira P., Camarero S., Guillén F., Martínez M. J., Gutiérrez A., del Río J. C., Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8, 195–204 (2005). 1620049816200498

10.1016/j.copbio.2010.10.009

10.1016/j.biortech.2011.05.027

10.1002/cssc.201100133

10.1007/s12155-013-9314-7

10.1016/j.jaap.2010.02.009

10.1039/c3gc41951g

R. Davis et al . “Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic Deconstruction of biomass to sugars and biological conversion of Sugars to Hydrocarbons ” NREL Report No. TP-5100-60223 Golden CO (2013).

10.1016/j.cherd.2010.01.021

10.1021/jf060722v

10.1016/j.polymdegradstab.2009.07.007

10.1002/bbb.1353

10.1039/b926617h

10.1016/j.indcrop.2012.11.025

10.1002/bbb.206

10.1590/S0100-40422011000200020

10.1021/ie302242h

C. E. Wyman et al . “Comparative Performance of Leading Pretreatment Technologies for Biological Conversion of Corn Stover Poplar Wood and Switchgrass to Sugars ” in Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals C. E. Wyman Ed. (Wiley Oxford 2013) pp. 239–260.

10.1016/j.biortech.2004.06.025

10.1515/HF.2011.133