Ligand‐Accelerated Catalysis

Wiley - Tập 34 Số 10 - Trang 1059-1070 - 1995
David J. Berrisford1, Carsten Bolm2, K. Barry Sharpless3
1Dept of Chemistry, University of Manchester Institute of Science and Technology, Manchester, UK
2Fachbereich Chemie der Universität Marburg, Germany
3The Scripps Research Institute, Department of Chemistry, 10666 North Torrey Pines Road, La Jolla, CA 92037 (USA), Telefax: Int. code (619)554‐6406

Tóm tắt

AbstractThe search for new metal‐catalyzed asymmetric reactions has provided some fascinating insights into the effects imposed on the metal catalysts by chiral ligands. A practical consequence is the discovery of ligand‐accelerated catalysis (LAC). Thus, an existing catalyzed process is improved by the addition of a specific ligand, which leads to a faster, “ligand‐accelerated” reaction. Both homogeneous and heterogeneous catalysts are known to exhibit this behavior. The concept is especially valuable in reactions catalyzed by early transition metals, where dynamic ligand exchange processes require an efficient in situ self‐selection of a highly reactive catalyst from a variety of thermodynamically dictated assemblies. Results of detailed mechanistic studies will be presented, and the significance of LAC phenomena in transformations catalyzed by early and late transition metals will be discussed.

Từ khóa


Tài liệu tham khảo

10.1021/ja00538a077

Sharpless K. B., 1986, Chem. Brit., 22, 38

1984, Proc. Robert A. Welch Found. Conf. Chem. Res., 27, 59

1985, CHEMTECH, 15, 692

10.1016/B978-0-08-092493-9.50013-X

10.1021/ja00001a018

10.1021/ja00001a019

(a)R. A.Johnson K. B.Sharplessin Ref. [9b] S. 103;

10.1016/B978-0-08-092493-9.50012-8

Pfenninger A., 1986, Synthesis, 89

10.1021/ja00253a032

10.1021/ja00410a053

10.1021/jo00380a032

10.1021/jo00376a068

10.1021/jo00369a032

10.1021/jo00350a050

10.1021/jo00350a051

10.1021/jo00209a047

10.1021/jo00209a048

10.1021/jo00203a039

10.1021/ja00532a050

10.1021/ja00214a053

10.1021/ja00184a055

The activation of a stoichiometric reagent by a ligand is considered as “ligand acceleration”. To be aligand‐accelerated catalysis(LAC) a catalytically active species (other than the ligand) must be present.

For a very well studied example of a ligand‐accelerated stereoselective reaction seeW.Klute R.Dress R. W.Hoffmann J. Chem. Soc. Perkin Trans 2 1993 1409.

Brunner H., 1994, Handbook of Enantioselective Catalysis

10.1002/9780470147276.ch3

Noyori R., 1994, Asymmetric Catalysis in Organic Synthesis

Ojima I., 1993, Catalytic Asymmetric Synthesis

10.1007/978-3-642-83758-6_2

10.1039/cs9891800187

10.1351/pac199062040589

10.1126/science.248.4960.1194

Brunner H., 1988, Synthesis, 645

10.1126/science.3358127

10.1038/342631a0

10.1016/S0040-4020(01)89159-6

Noyori R., 1985, Chem. Scr., 25, 83

10.1021/ar00178a005

(b)H.Takaya T.Ohta R.Noyori in Ref. [9b] p. 1;

Noyori R., 1992, CHEMTECH, 360

10.1016/S0040-4020(01)89365-0

10.1021/jo00090a026

Bradley D. C., 1978, Metal Alkoxides

Clark R. J. H., 1968, The Chemistry of Titanium and Vanadium

10.1021/om00018a015

Sharpless K. B., 1987, Chem. Scr., 27, 521

If the in situ self‐assembly leads to more than one catalytically active chiral species cooperative or counteracting stereochemical effects may result. Even in the worst cases ligand acceleration can enable the desired transformation to occur in a rapid and highly stereoselective manner.

10.1021/ja00333a060

10.1021/ja00238a065

10.1021/jo00360a058

10.1016/S0040-4020(01)89364-9

10.1021/ja00448a059

Sharpless K. B., 1979, Aldrichim. Acta, 12, 63

(a)K.Tani M.Hanafusa S.Otsuka Tetrahedron Lett.1979 3017;

10.1021/ja00448a058

10.1021/jo00178a039

10.1016/S0020-1693(00)90233-0

10.1021/jo00168a064

(a)H. B.Kaganin ref. [9b] p. 203;

Kagan H. B., 1990, Synlett, 643

10.1021/ja00338a030

10.1016/S0040-4020(01)87689-4

Zhao S., 1989, Org. Synth., 68, 49

F.DiFuria G.Modena R.Seraglia Synthesis1984 325.

10.1021/jo00069a009

Narasaka K., 1991, Synthesis, 1

10.1002/ange.19901021118

10.1002/anie.199013201

10.1351/pac198860111597

(d)K.Marouka H.Yamamotoin ref. [9b] p. 413;

Trost B. M., 1991, Comprehensive Organic Synthesis

10.1021/cr00013a003

10.1016/S0040-4039(00)99546-7

10.1016/S0040-4039(01)93432-X

10.1016/0040-4020(92)80020-G

10.1002/ange.19911030124

10.1002/anie.199100991

10.1002/ange.19911030820

10.1002/anie.199110081

10.1002/ange.19911031034

10.1002/anie.199113211

10.1002/hlca.19920750704

10.1016/0040-4020(92)80023-9

10.1016/S0040-4020(01)89373-X

10.1016/S0040-4020(01)90475-2

10.1021/jo00033a008

10.1002/ange.19931050438

10.1002/anie.199305821

10.1016/S0040-4039(00)93393-8

10.1016/S0040-4039(00)60721-9

10.1021/jo00093a005

10.1021/jo00094a027

10.1021/cr00022a008

10.1016/S0040-4039(00)93553-6

10.1002/hlca.19920750114

10.1021/ja00057a064

The normal catalyst loadings are 8 mol% for the additions of the functionalized organozinc complexes [30a–g].

(a)N.Iwasawa Y.Hayashi H.Sakurai K.Narasaka Chem. Lett.1989 1581;

10.1016/S0040-4020(01)89384-4

β‐Naphthyl appears optimal; α‐naphthyl is too hindered and both the rate andeesuffer [29]. A similar effect was reported by Oguni in the enantioselective opening ofmesoepoxides by Me3SiN3catalyzed by titanium/tartrate mixtures. The complex derived from di‐tert‐butyltartrate ester effected enantioselective catalysis whereas the catalyst prepared with the diisopropyl ester was only effective under stoichiometric conditions:M.Hayashi K.Kohmura N.Oguni Synlett1991 774.

10.1021/jo00025a003

10.1021/ja00068a079

10.1021/ja00071a074

10.1021/jo00076a005

10.1016/S0040-4039(00)61486-7

10.1016/S0040-4020(01)80535-4

10.1002/ange.19941060406

10.1002/anie.199404171

10.1021/cr00022a010

10.1021/ja00166a035

10.1021/ja00042a051

10.1016/0040-4020(92)80018-B

10.1016/S0040-4039(00)76849-3

(e)K.Mikami M.Terada S.Narisawa T.Nakai Synlett1992 255.

10.1021/cr00013a014

I.Paterson D. J.Berrisford University of Cambridge unpublished results.

G. E.Keck University of Utah unpublished results;

K.Mikami Tokyo Institute of Technology unpublished results.

For recent results with a μ‐oxo‐titanium complex seeM.Terada K.Mikami J. Chem. Soc. Chem. Commun.1994 833.

10.1021/ja00068a098

10.1021/ja00086a014

(a) For recent reviews on asymmetric synthesis of cyanohydrins see:M.North Synlett1993 807;

10.1002/ange.19941061504

10.1002/anie.199415551

10.1016/S0040-4020(01)89374-1

10.1021/jo00058a037

(c)J. Chem. Soc. Chem. Commun.1991 1752;

(d)M.Hayashi T.Matsuda N.Oguni J. Chem. Soc. Chem. Commun.1990 1364;

(e)J. Chem. Soc. Perkin Trans. 11992 3135.

M.Hayashi M.Tamura N.Oguni Synlett1992 663.

A.Mori S.Inoue Chem. Lett.1991 145.

10.1021/ja00047a002

10.1016/S0040-4039(00)92163-4

(c)H.Abe H.Nitta A.Mori S.Inoue Chem. Lett.1992 2443;

10.1021/jo00051a020

10.1002/jlac.19365220110

10.1002/ange.19370500802

10.1002/ange.19380513102

10.1002/jlac.19425500106

10.1021/jo00036a003

10.1021/jo00067a002

10.1016/S0040-4039(00)92331-1

10.1016/S0040-4039(00)61195-4

10.1021/cr00032a009

10.1016/S0040-4039(00)84881-9

(b)T.Yamada K.Narasaka Chem. Lett.1986 131;

10.1021/ja00254a067

10.1016/S0040-4039(00)96305-6

10.1021/jo00286a002

10.1021/ja00208a025

10.1016/S0040-4039(00)88869-3

10.1016/0040-4039(92)88090-R

10.1021/jo00060a004

10.1016/S0040-4020(01)80234-9

10.1016/S0040-4039(00)60748-7

10.1021/ja00083a014

10.1021/ja00098a006

(c)D. W.Nelson K. B.Sharpless The Scripps Research Institute unpublished results.

Keq(quinuclidine) = 80000 L mol−1(toluene):H. C.Kolb K. B.Sharpless The Scripps Research Institute unpublished results. Binding constants for the alkaloids DHQ and DHQD are greater in toluene than intBuOH. The stoichiometric osmylations with bidentate chiral amines [54] are generally run at low temperature in toluene.

(a) The effect of tertiary amine ligands on the catalytic turnover in the original AD process with NMO as the oxidant in a homogeneous acetone/water system is quite different from that seen in the new two‐phase AD process with potassium hexacyanoferrate(III) as the oxidant. In the NMO system quinuclidine strongly inhibits the catalysis at concentrations above 0.01M[5a] and even the alkaloid ligands DHQ and DHQD begin to show inhibition at concentrations greater than 0.5M[5b]. These effects are probably due to “second‐cycle problems” [5b 57b] which will not be discussed here since they are absent in the now favored potassium hexacyanoferrate(III)‐based AD system.

10.1016/0040-4039(91)80601-2

The commercial AD mixes use 0.4 mol% OsO4to ensure reproducible results. With slower reacting olefins the OsO4loading should be increased to 1 mol%.

For example the presence of the methoxy group on the quinoline ring (the difference between the quinine and cinchonine series) imparts an approximately twofold rate increase (kc) for 2‐vinylnaphthalene [55a].

10.1016/S0040-4039(00)61205-4

10.1126/science.260.5116.1918

10.1021/ja00074a079

10.1021/ja00020a069

10.1021/ja00084a005

10.1021/ja00047a050

10.1002/ange.19870991125

10.1002/anie.198711841

10.1021/ja00170a010

10.1021/ja00019a013

10.1016/S0040-4039(00)92049-5

(b)T.Harada A.Oku Synlett1994 95;

10.1021/jo00232a022

10.1021/ja00157a052

10.1021/ja00168a022

10.1021/ja00065a069

10.1039/cs9942300101

10.1021/ic00289a027

10.1021/jo00350a012

10.1016/0040-4039(94)85071-2

10.1016/0040-4039(94)85302-9

H.‐L.Kwong Dissertation Massachusetts Institute of Technology Boston USA 1993.

10.1021/ja00268a026

10.1021/ja00062a080

10.1021/ja00451a043

10.1021/ja00376a006

10.1002/ange.19931050938

10.1002/anie.199313291

10.1021/ja00060a086

10.1021/ja00082a002

10.1021/om00013a050

10.1021/ja00090a044

The [3 + 2] mechanism is being examined by a theoretical approach:S.Niwayama K. N.Houk University of California Los Angeles unpublished results.

10.1021/om00050a043

10.1002/ange.19931050519

10.1002/anie.199307311

ref. [44]. However we have not observed metallaoxetanes in the osmylation using matrix isolation techniques:D. V.McGrath G. D.Brabson L.Andrews K. B.Sharpless The Scripps Research Institute unpublished results.

10.1021/cr00106a006

Norbornene undergoes ring‐opening metathesis polymerization with OsO4 an observation that can be rationalized by invoking a metallaoxetane:J. G.Hamilton O. N. D.Mackey J. J.Rooney D. G.Gilheany J. Chem. Soc. Chem. Commun.1990 1600.

10.1021/ja00841a071

10.1021/jo01299a045

10.1021/jo00863a052

10.1021/jo00406a057

10.1021/ja00479a051

10.1002/bscb.19850941101

C.Burns D.Gilheany C. Y.Park K. B.Sharpless The Scripps Research Institute unpublished results.

10.3891/acta.chem.scand.48-0439

10.5059/yukigoseikyokaishi.37.173

(b)Y.Orito S.Imai S.Niwa Nippon Kagaku Kaishi1979 118;

(c)Nippon Kagaku Kaishi1980 670;

(d)Nippon Kagaku Kaishi1982 137;

10.1016/0021-9517(90)90079-Y

10.1021/ja00175a042

10.1016/S0167-2991(09)60810-7

10.1016/S0167-2991(08)63313-3

10.1016/0304-5102(89)80234-2

10.1016/0304-5102(90)85156-C

10.1016/0304-5102(91)80076-F

10.1006/jcat.1993.1354

Bartok M., 1985, Stereochemistry in Heterogeneous Metal Catalysis, 511

10.1016/S0957-4166(00)82195-3

10.1016/S0167-2991(08)61108-8

10.1002/ange.19891010849

10.1002/anie.198910791

10.1002/ange.19941060904

10.1002/anie.199409131

H.‐U.Blaser Ciba Geigy AG Basel unpublished results.

For a recent study describing enhanced hydrogenation rates with novel alkaloid‐modified Pt catalysts see:S. P.Griffiths P.Johnston W. A. H.Vermeer P. B.Wells J. Chem. Soc. Chem. Commun.1994 2431.