Lifespan extension by conditions that inhibit translation in <i>Caenorhabditis elegans</i>

Aging Cell - Tập 6 Số 1 - Trang 95-110 - 2007
Malene Hansen1, Stefan Taubert2, Douglas K. Crawford3, Nataliya Libina3, Seung‐Jae Lee3, Cynthia Kenyon3
1Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA 94158, USA.
2Department of Cellular and Molecular Pharmacology, University of California, 600 – 16th Street, San Francisco, CA 94158, USA
3Department of Biochemistry and Biophysics and

Tóm tắt

SummaryMany conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal‐protein S6 kinase or translation‐initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal‐stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF‐16/FOXO, and one that increases lifespan and stress resistance independently of DAF‐16. Our findings link TOR, but not sir‐2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis.

Từ khóa


Tài liệu tham khảo

10.1126/science.1065768

10.1093/genetics/77.1.71

10.1128/MCB.26.10.3955-3965.2006

10.1126/science.1077780

10.1016/S1534-5807(01)00071-5

10.1016/j.cell.2005.01.029

10.1101/gr.3274805

10.1101/gad.1308205

10.1371/journal.pgen.0010017

10.1101/gad.1212704

10.1093/gerona/61.5.444

10.1016/S0960-9822(01)00594-2

10.1096/fasebj.13.11.1385

10.1016/S0531-5565(03)00161-X

10.1038/20694

10.1126/science.1115535

10.1111/j.1474-9726.2006.00238.x

10.1038/nature01278

10.1016/j.cub.2004.03.059

10.1016/j.cell.2005.02.002

10.1038/366461a0

10.1016/0047-6374(77)90043-4

10.1073/pnas.95.22.13091

10.1126/science.1113611

10.1038/ng1056

10.1111/j.1474-9726.2006.00241.x

10.1038/88850

10.1016/S0960-9822(02)01091-6

10.1083/jcb.200408161

10.1046/j.1474-9728.2003.00043.x

10.1016/S0047-6374(02)00168-9

10.1038/nature01789

10.1101/gad.390106

10.1073/pnas.0500749102

10.1042/BST0340213

10.1038/sj.embor.7400088

10.1093/genetics/141.4.1365

10.1101/gr.2505604

10.1093/gerona/60.3.293

10.1016/S0955-0674(98)80150-6

10.1016/j.exger.2006.05.014

10.1016/j.cell.2005.07.034

10.1126/science.1081447

10.1101/gad.1395406

10.1016/S0047-6374(01)00341-4

10.1016/j.semcdb.2004.11.005

10.1038/35065638

10.1038/426620a

10.1093/emboj/20.16.4370

10.1016/j.mad.2005.09.005

10.1016/j.cell.2006.01.016