Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle

James N. Cobley1, Giorgos K. Sakellariou2, Stephen P. Murray3, Sarah Waldron4, Warren Gregson1, Jatin G. Burniston1, James P. Morton1, Lesley A. Iwanejko2, Graeme L. Close1
1Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
2Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK
3Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
4Stepping Hill Hospital, Stockport SK2 7JE, UK

Tóm tắt

Abstract Background The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. Results PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Conclusions Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.

Từ khóa


Tài liệu tham khảo

Deschenes MR: Effects of aging on muscle fiber type and size. Sports Med. 2004, 34: 809-824. 10.2165/00007256-200434120-00002.

Thompson LV: Age-related muscle dysfunction. Exp Gerontol. 2009, 44: 106-111. 10.1016/j.exger.2008.05.003.

Janssen I, Heymsfield SB, Ross R: Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002, 50: 889-896. 10.1046/j.1532-5415.2002.50216.x.

Palomero J, Jackson MJ: Redox regulation in skeletal muscle during contractile activity and aging. J Anim Sci. 2010, 88: 1307-1313. 10.2527/jas.2009-2436.

Jang YC, Liu Y, Hayworth CR, Bhattacharya A, Lustgarten MS, Muller FL, Chaudhuri A, Qi W, Li Y, Huang JY, et al: Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell. 2012, 11: 770-782. 10.1111/j.1474-9726.2012.00843.x.

Jacob KD, Hooten NN, Trzeciak AR, Evans MK: Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev. 2013, 134 (3–4): 139-157.

Kryston TB, Georgiev AB, Pissis P, Georgakilas AG: Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011, 711: 193-201. 10.1016/j.mrfmmm.2010.12.016.

Vijg J, Suh Y: Genome instability and aging. Annu Rev Physiol. 2013, 75: 645-668. 10.1146/annurev-physiol-030212-183715.

Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF: Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med. 1999, 26: 303-308. 10.1016/S0891-5849(98)00208-1.

Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, et al: Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med. 2011, 51: 417-423. 10.1016/j.freeradbiomed.2011.04.018.

Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyakawa T, Nakayama C, Samhan-Arias AK, et al: Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One. 2010, 5: e11468-10.1371/journal.pone.0011468.

Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E: Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013, 394: 393-414.

Booth FW, Laye MJ, Roberts MD: Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol. 2011, 111: 1497-1504.

Cobley JN, Bartlett JD, Kayani A, Murray SW, Louhelainen J, Donovan T, Waldron S, Gregson W, Burniston JG, Morton JP, Close GL: PGC-1alpha transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology. 2012, 13: 621-631. 10.1007/s10522-012-9408-1.

Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS: Endurance exercise as a countermeasure for aging. Diabetes. 2008, 57: 2933-2942. 10.2337/db08-0349.

Ji LL: Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med. 2008, 44: 142-152. 10.1016/j.freeradbiomed.2007.02.031.

Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, Debeer J, Tarnopolsky MA: Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One. 2010, 5: e10778-10.1371/journal.pone.0010778.

Jackson MJ: Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med. 2009, 47: 1267-1275. 10.1016/j.freeradbiomed.2009.09.005.

Luo X, Kraus WL: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012, 26: 417-432. 10.1101/gad.183509.111.

Welsby I, Hutin D, Leo O: Complex roles of members of the ADP-ribosyl transferase super family in immune defenses: looking beyond PARP1. Biochem Pharmacol. 2012, 84: 11-20. 10.1016/j.bcp.2012.02.016.

Siu PM, Alway SE: Mitochondria-associated apoptotic signaling in denervated rat skeletal muscle. J Physiol. 2005, 565: 309-323. 10.1113/jphysiol.2004.081083.

De Vos M, Schreiber V, Dantzer F: The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol. 2012, 84: 137-146. 10.1016/j.bcp.2012.03.018.

Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Helleday T: Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 2011, 39: 3166-3175. 10.1093/nar/gkq1241.

Erdelyi K, Bai P, Kovacs I, Szabo E, Mocsar G, Kakuk A, Szabo C, Gergely P, Virag L: Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 2009, 23: 3553-3563. 10.1096/fj.09-133264.

Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, Santoro R, Hassa PO, Tschopp J, Hottiger MO: Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-kappaB target genes. Mol Cell. 2012, 46: 200-211. 10.1016/j.molcel.2012.02.016.

Park SY, Kim HY, Lee JH, Yoon KH, Chang MS, Park SK: The age-dependent induction of apoptosis-inducing factor (AIF) in the human semitendinosus skeletal muscle. Cell Mol Biol Lett. 2010, 15: 1-12. 10.2478/s11658-009-0030-4.

Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C: Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology. 2012, 58: 99-106. 10.1159/000330064.

Massudi H, Grant R, Guillemin GJ, Braidy N: NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep. 2012, 17: 28-46. 10.1179/1351000212Y.0000000001.

Canto C, Auwerx J: Interference between PARPs and SIRT1: a novel approach to healthy ageing?. Aging (Albany NY). 2011, 3: 543-547.

Canto C, Sauve AA, Bai P: Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med. 2013, epub ahead of print

Krishnakumar R, Kraus WL: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010, 39: 8-24. 10.1016/j.molcel.2010.06.017.

Krishnakumar R, Kraus WL: PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell. 2010, 39: 736-749. 10.1016/j.molcel.2010.08.014.

Houtkooper RH, Canto C, Wanders RJ, Auwerx J: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010, 31: 194-223. 10.1210/er.2009-0026.

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, et al: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibers. Nature. 2002, 418: 797-801. 10.1038/nature00904.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005, 434: 113-118. 10.1038/nature03354.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ: A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010, 588: 1011-1022. 10.1113/jphysiol.2009.181743.

Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP: High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011, 29: 547-553. 10.1080/02640414.2010.545427.

Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR, O'Gorman DJ: Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signaling kinases in human skeletal muscle. J Physiol. 2010, 588: 1779-1790. 10.1113/jphysiol.2010.188011.

Godin R, Ascah A, Daussin FN: Intensity-dependent activation of intracellular signaling pathways in skeletal muscle: role of fiber type recruitment during exercise. J Physiol. 2010, 588: 4073-4074. 10.1113/jphysiol.2010.195925.

Morton JP, Croft L, Bartlett JD, Maclaren DP, Reilly T, Evans L, McArdle A, Drust B: Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009, 106: 1513-1521. 10.1152/japplphysiol.00003.2009.

Morton JP, Holloway K, Woods P, Cable NT, Burniston J, Evans L, Kayani AC, McArdle A: Exercise training-induced gender-specific heat shock protein adaptations in human skeletal muscle. Muscle Nerve. 2009, 39: 230-233. 10.1002/mus.21182.

Vasilaki A, van der Meulen JH, Larkin L, Harrison DC, Pearson T, Van Remmen H, Richardson A, Brooks SV, Jackson MJ, McArdle A: The age-related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu, Zn superoxide dismutase. Aging Cell. 2010, 9: 979-990. 10.1111/j.1474-9726.2010.00635.x.