LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries

Nature Sustainability - Tập 4 Số 5 - Trang 392-401
Xiaohui Zhu1, Fanqi Meng2, Qinghua Zhang2, Liang Xue1, He Zhu3, Si Lan1, Qi Liu3, Jing Zhao4, Yuhang Zhuang4, Qiubo Guo4, Bo Liu4, Lin Gu2, Xia Lu5, Yang Ren6, Hui Xia4
1School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
3Department of Physics, City University of Hong Kong, Hong Kong, China
4Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, China
5School of Materials, Sun Yat-Sen University, Guangzhou, China
6X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goodenough, B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J. M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 4976 (2020).

Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

Gummow, R. J. & Thackeray, M. M. An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 141, 1178–1182 (1994).

Koetschau, I., Richard, M. N., Dahn, J. R., Soupart, J. B. & Rousche, J. C. Orthorhombic LiMnO2 as a high capacity cathode for Li-ion cells. J. Electrochem. Soc. 142, 2906–2910 (1995).

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

Okubo, M. et al. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 4, 741–752 (2010).

Thackeray, M. M., Johnson, P. J., De Picciotto, L. A., Bruce, P. G. & Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19, 179–187 (1984).

Armstrong, A. R. et al. Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem. Mater. 16, 3106–3118 (2004).

Huang, Y. et al. Lithium manganese spinel cathodes for lithium-ion batteries. Adv. Energy Mater. https://doi.org/10.1002/aenm.202000997 (2020).

Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).

Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

Zuo, C. et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Energy Mater. 10, 2000363 (2020).

Kang, K., Meng, Y. S., Breger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

Choi, J. & Manthiram, A. Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J. Electrochem. Soc. 152, A1714–A1718 (2005).

Deng, Y. P. et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv. Funct. Mater. 29, 1808522 (2019).

Ma, C. et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017).

Kim, S. et al. Direct observation of an anomalous spinel-to-layered phase transition mediated by crystal water intercalation. Angew. Chem. Int. Ed. 54, 15094–15099 (2015).

Lyon, D. K. et al. Highly oxidation resistant inorganic-porphyrin analogue polyoxometalate oxidation catalysts. 1. The synthesis and characterization of aqueous-soluble potassium salts of α2-P2W17O61 (Mn+∙OH2)(n−10) and organic solvent soluble tetra-n-butylammonium salts of α2-P2W17O61 (Mn+∙Br)(n−11) (M = Mn3+, Fe3+, Co2+, Ni2+, Cu2+). J. Am. Chem. Soc. 113, 7209–7221 (1991).

Li, Q. et al. Both cationic and anionic co-(de) intercalation into a metal-oxide material. Joule 2, 1134–1145 (2018).

Assat, G. & Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 372–386 (2018).

Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

Li, N. et al. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. ACS Energy Lett. 4, 2836–2842 (2019).

Wu, J. et al. Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering. Condens. Matter 4, 5 (2019).

Kirillov, S. A. et al. Oxidation of synthetic hausmannite (Mn3O4) to manganite (MnOOH). J. Mol. Struct. 928, 89–94 (2009).

Yang, E. et al. Origin of unusual spinel-to-layered phase transformation by crystal water. Chem. Sci. 9, 433–438 (2018).

Li, Y. F. & Liu, Z. P. Active site revealed for water oxidation on electrochemically induced δ-MnO2: role of spinel-to-layer phase transition. J. Am. Chem. Soc. 140, 1783–1792 (2018).

Robertson, A. D. et al. Layered LixMn1−yCoyO2 intercalation electrodes—influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380–2386 (2001).

Robertson, A. D. et al. The layered intercalation compounds Li(Mn1−yCoy)O2: positive electrode materials for lithium-ion batteries. J. Solid State Chem. 145, 549–556 (1999).

Bianchini, M. et al. Spinel materials for Li-ion batteries: new insights obtained by operando neutron and synchrotron X-ray diffraction. Acta Crystallogr. B 71, 688–701 (2015).

Mobah, A., Verbaere, A. & Tournoux, M. LixMnO2–lambda phases related to the spinel type. Mater. Res. Bull. 18, 1375–1381 (1983).

Van der Ven, A., Marianetti, C., Morgan, D. & Ceder, G. Phase transformations and volume changes in spinel LixMn2O4. Solid State Ion. 135, 21–32 (2000).

Seymour, I. D. et al. Preventing structural rearrangements on battery cycling: a first principles investigation of the effect of dopants on the migration barriers in layered Li0.5MnO2. J. Phys. Chem. C 120, 19521–19530 (2016).

Xia, H. et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9, 5100 (2018).

Seo, W. S. et al. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43, 1115–1117 (2004).

Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).