LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor

Remote Sensing - Tập 12 Số 3 - Trang 424
Yu Morishita1,2, Milan Lazecký1, Tim Wright1, Jonathan Weiss1,3, John R. Elliott1, Andrew Hooper1
1COMET, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
2Geography and Crustal Dynamics Research Center, Geospatial Information Authority of Japan, Tsukuba 305-0811, Japan
3Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany

Tóm tắt

For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit.

Từ khóa


Tài liệu tham khảo

Zhou, 2009, Applications of SAR Interferometry in Earth and Environmental Science Research, Sensors, 9, 1876, 10.3390/s90301876

Elliott, 2016, The role of space-based observation in understanding and responding to active tectonics and earthquakes, Nat. Commun., 7, 13844, 10.1038/ncomms13844

Hooper, 2012, Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics, 514–517, 1, 10.1016/j.tecto.2011.10.013

Sunar, 2016, Time series analysis of InSAR data: Methods and trends, ISPRS J. Photogramm. Remote Sens., 115, 90, 10.1016/j.isprsjprs.2015.10.003

Ferretti, 2001, Permanent Scatters in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8, 10.1109/36.898661

Hooper, 2007, Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, J. Geophys. Res. Solid Earth, 112, 1, 10.1029/2006JB004763

Berardino, 2002, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375, 10.1109/TGRS.2002.803792

Ferretti, 2011, A new algorithm for processing interferometric data-stacks: SqueeSAR, IEEE Trans. Geosci. Remote Sens., 49, 3460, 10.1109/TGRS.2011.2124465

Tong, 2013, High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR, J. Geophys. Res. Solid Earth, 118, 369, 10.1029/2012JB009442

Hussain, 2018, Constant strain accumulation rate between major earthquakes on the North Anatolian Fault, Nat. Commun., 9, 1392, 10.1038/s41467-018-03739-2

(2019, November 27). Homepage | Copernicus. Available online: https://www.copernicus.eu/en.

Potin, P., Rosich, B., Miranda, N., Grimont, P., Shurmer, I., O’Connell, A., Krassenburg, M., and Gratadour, J.-B. (2019). Copernicus Sentinel-1 Constellation Mission Operations Status. Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE.

Sandwell, 2011, Open radar interferometry software for mapping surface Deformation, Eos Trans. Am. Geophys. Union, 92, 234, 10.1029/2011EO280002

(2019, November 27). gmtsar: GMTSAR. Available online: https://github.com/gmtsar/gmtsar.

Rosen, P.A., Gurrola, E., Sacco, G.F., and Zebker, H. (2012, January 23–26). The InSAR scientific computing environment. Proceedings of the IEEE EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany.

(2019, November 27). isce2: InSAR Scientific Computing Environment Version 2. Available online: https://github.com/isce-framework/isce2.

(2019, November 27). STEP | Science Toolbox Exploitation Platform. Available online: http://step.esa.int/main/.

Agram, 2013, New Radar Interferometric Time Series Analysis Toolbox Released, Eos Trans. Am. Geophys. Union, 94, 69, 10.1002/2013EO070001

Agram, P., Jolivet, R., and Simons, M. (2019, November 27). Generic InSAR Analysis Toolbox (GIAnT)—User Guide. Available online: http://earthdef.caltech.edu.

(2019, November 27). MintPy: Miami InSAR Time-Series Software in Python. Available online: https://github.com/insarlab/MintPy.

Yunjun, 2019, Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, Comput. Geosci., 133, 104331, 10.1016/j.cageo.2019.104331

(2019, November 27). StaMPS: Stanford Method for Persistent Scatterers. Available online: https://github.com/dbekaert/StaMPS.

Galve, J., Pérez-Peña, J., Azañón, J., Closson, D., Caló, F., Reyes-Carmona, C., Jabaloy, A., Ruano, P., Mateos, R., and Notti, D. (2017). Evaluation of the SBAS InSAR Service of the European Space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens., 9.

Cignetti, M., Manconi, A., Manunta, M., Giordan, D., De Luca, C., Allasia, P., and Ardizzone, F. (2016). Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d’Aosta Case Study, Northern Italy. Remote Sens., 8.

(2019, November 27). ARIA Products, Available online: https://aria-products.jpl.nasa.gov/.

Bekaert, D., Karim, M., Justin, L., Hua, H., Agram, P., Owen, S., Manipon, G., Malarout, N., Lucas, M., and Sacco, G. (2019, January 8–18). Development and Dissemination of Standardized Geodetic Products by the Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards. Proceedings of the International Union of Geodesy and Geophysics (IUGG), Montreal, Canada.

(2019, November 27). ARIA-Tools: Tools for Exploiting ARIA Standard Products. Available online: https://github.com/aria-tools/ARIA-tools.

Werner, 2016, Sentinel-1 Support in the GAMMA Software, Procedia Comput. Sci., 100, 1305, 10.1016/j.procs.2016.09.246

Werner, C., Wegmüller, U., Strozzi, T., and Wiesmann, A. (2000, January 16–20). GAMMA SAR and interferometric processing software. Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden.

(2019, November 27). COMET-LiCS Sentinel-1 InSAR Portal. Available online: https://comet.nerc.ac.uk/COMET-LiCS-portal/.

(2019, November 27). LiCSBAS: LiCSBAS Package to Conduct InSAR Time Series Analysis Using LiCSAR Products. Available online: https://github.com/yumorishita/LiCSBAS.

Scheiber, 2000, Coregistration of interferometric SAR images using spectral diversity, IEEE Trans. Geosci. Remote Sens., 38, 2179, 10.1109/36.868876

Scheiber, 2012, TOPS Interferometry With TerraSAR-X, IEEE Trans. Geosci. Remote Sens., 50, 3179, 10.1109/TGRS.2011.2178247

Goldstein, 1998, Radar interferogram filtering for geophysical applications, Geophys. Res. Lett., 25, 4035, 10.1029/1998GL900033

Hooper, A.J. (December, January 30). A statistical-cost approach to unwrapping the phase of InSAR time series. Proceedings of the Fringe 2009 Workshop, Frascati, Italy.

Chen, 2002, Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Trans. Geosci. Remote Sens., 40, 1709, 10.1109/TGRS.2002.802453

Lazecky, M., Maghsoudi, Y., Morishita, Y., Wright, T.J., Hooper, A., Elliott, J., Hatton, E., Greenall, N., Gonzalez, P.J., and Spaans, K. LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activities, Manuscript in Preparation.

Yu, 2018, Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations, J. Geophys. Res. Solid Earth, 123, 9202, 10.1029/2017JB015305

Hanssen, R.F. (2001). Radar Interferometry, Springer. Remote Sensing and Digital Image Processing.

Bekaert, 2015, Statistical comparison of InSAR tropospheric correction techniques, Remote Sens. Environ., 170, 40, 10.1016/j.rse.2015.08.035

Hamlyn, 2018, What causes subsidence following the 2011 eruption at Nabro (Eritrea)?, Prog. Earth Planet. Sci., 5, 31, 10.1186/s40645-018-0186-5

Jung, 2014, Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities, IEEE Trans. Geosci. Remote Sens., 52, 2678, 10.1109/TGRS.2013.2264532

Morishita, 2018, Ground Surface Displacement of Kirishima Volcano Group Detected by ALOS-2 InSAR Time Series Analysis and Effect of Atmospheric Noise Reduction, J. Geod. Soc. Japan, 64, 28

(2019, November 27). Set I - Atmospheric Model High Resolution 10-Day Forecast (HRES) | ECMWF. Available online: https://www.ecmwf.int/en/forecasts/datasets/set-i.

(2019, November 27). GACOS. Available online: http://ceg-research.ncl.ac.uk/v2/gacos/.

Wang, Q., Yu, W., Xu, B., and Wei, G. (2019). Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California. Sensors, 19.

Wang, 2019, Surface deformation of Asama volcano, Japan, detected by time series InSAR combining persistent and distributed scatterers, 2014‒2018, Earth Planets Space, 71, 121, 10.1186/s40623-019-1104-9

Shen, 2019, A Spatially Varying Scaling Method for InSAR Tropospheric Corrections Using a High-Resolution Weather Model, J. Geophys. Res. Solid Earth, 124, 4051, 10.1029/2018JB016189

Biggs, 2007, Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska, Geophys. J. Int., 170, 1165, 10.1111/j.1365-246X.2007.03415.x

Doin, 2009, Time series analysis of Mexico City subsidence constrained by radar interferometry, J. Appl. Geophys., 69, 1, 10.1016/j.jappgeo.2009.02.006

Zonno, 2015, Phase Inconsistencies and Multiple Scattering in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 53, 6608, 10.1109/TGRS.2015.2444431

Schmidt, 2003, Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res. Solid Earth, 108, 1, 10.1029/2002JB002267

Doin, M.-P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., Grandin, R., Pathier, E., and Pinel, V. (2011, January 19–23). Presentation of the small baseline NSBAS processing chain on a case example: The Etna deformation monitoring from 2003 to 2010 using Envisat data. Proceedings of the Fringe 2011 Workshop, Frascati, Italy.

Efron, 1986, Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 54

Hanssen, R.F., van Leijen, F.J., van Zwieten, G.J., Bremmer, C., Dortland, S., and Kleuskens, M. (2020, January 27). Validation of existing processing chains in TerraFirma stage 2. Product validation: Validation in the Amsterdam and Alkmaar area Draft version 3. Available online: https://raw.githubusercontent.com/wiki/yumorishita/LiCSBAS/documents/Hanssen_2008.pdf.

Hoffmann, 2001, Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry, Water Resour. Res., 37, 1551, 10.1029/2000WR900404

Bell, J.W., Amelung, F., Ferretti, A., Bianchi, M., and Novali, F. (2008). Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res., 44.

Ozawa, 2011, Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475, 373, 10.1038/nature10227

Suito, 2018, Current Status of Postseismic Deformation Following the 2011 Tohoku-Oki Earthquake, J. Disaster Res., 13, 503, 10.20965/jdr.2018.p0503

Geospatial Information Authority of Japan (2018). Crustal Movements in the Tohoku District. Rep. Coord. Comm. Earthq. Predict., 100, 56–68.

Liang, 2019, Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data, IEEE Trans. Geosci. Remote Sens., 57, 6755, 10.1109/TGRS.2019.2908494

Weiss, J.R., Walters, R.J., Morishita, Y., Wright, T.J., Lazecky, M., Wang, H., Hussain, E., Hooper, A.J., Elliott, J.R., and González, P.J. Plate-scale measurements of interseismic velocity and strain from Sentinel-1 InSAR and GNSS data, Manuscript in Preparation.

Zhang, 1997, Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res. Solid Earth, 102, 18035, 10.1029/97JB01380

Aoki, S. (1976, January 13–17). Land Sibsidence in Niigata. Proceedings of the Anaheim Symposium, Anaheim, CA, USA.

(2019, November 27). Niigata Prefecture Ground Subsidence In the Niigata Plain. Available online: http://npdas.pref.niigata.lg.jp/kankyotaisaku/5c85f40531a5c.pdf.

Kanto Bureau of International Trade and Industry (1994). Report for Rationalization of Ground Water Use in Ojiya Area in Niigata Prefecture (Edition for Hydrological Analysis), Kanto Bureau of International Trade and Industry.

Sato, 2003, GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan, Eng. Geol., 67, 379, 10.1016/S0013-7952(02)00221-1

Chaussard, 2014, Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation, J. Geophys. Res. Solid Earth, 119, 6572, 10.1002/2014JB011266

Morishita, 2015, Deformation Parameter Estimation in Low Coherence Areas Using a Multisatellite InSAR Approach, IEEE Trans. Geosci. Remote Sens., 53, 4275, 10.1109/TGRS.2015.2394394

Rocca, 2007, Modeling interferogram stacks, IEEE Trans. Geosci. Remote Sens., 45, 3289, 10.1109/TGRS.2007.902286

Zebker, 1992, Decorrelation in Inteferometric Radar Echoes, IEEE Trans. Geosci. Remote Sens., 30, 950, 10.1109/36.175330

Morishita, 2015, Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils, IEEE Trans. Geosci. Remote Sens., 53, 1096, 10.1109/TGRS.2014.2333814