LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity
Tóm tắt
Từ khóa
Tài liệu tham khảo
European Space Agency (2020, May 27). Copernicus: Sentinel-1. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1.
Elliott, 2016, Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake, Nat. Geosci., 9, 174, 10.1038/ngeo2623
Massonnet, 1995, Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567, 10.1038/375567a0
Peltzer, 1995, Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry, Science, 268, 1333, 10.1126/science.268.5215.1333
Atzori, 2008, Postseismic displacement of the 1999 Athens earthquake retrieved by the differential interferometry by synthetic aperture radar time series, J. Geophys. Res., 113, 1
Biggs, 2009, The postseismic response to the 2002 M 7.9 denali fault earthquake: Constraints from InSAR 2003–2005, Geophys. J. Int., 176, 353, 10.1111/j.1365-246X.2008.03932.x
Fialko, 2014, El mayor-cucapah (Mw 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations, J. Geophys. Res. Solid Earth, 119, 1482, 10.1002/2013JB010193
Wang, 2018, Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 gorkha (Nepal) earthquake, J. Geophys. Res. Solid Earth, 123, 761, 10.1002/2017JB014620
Walters, 2011, Interseismic strain accumulation across the North Anatolian fault from envisat InSAR measurements, Geophys. Res. Lett., 38, 1, 10.1029/2010GL046443
Wright, 2001, Measurement of interseismic strain accumulation across the North Anatolian fault by satellite radar interferometry, Geophys. Res. Lett., 28, 2117, 10.1029/2000GL012850
Wright, 2013, Earthquake cycle deformation and the moho: Implications for the rheology of continental lithosphere, Tectonophysics, 609, 504, 10.1016/j.tecto.2013.07.029
Xu, 2018, Interseismic ground deformation and fault slip rates in the greater San Francisco bay area from two decades of space geodetic data, J. Geophys. Res. Solid Earth, 123, 8095, 10.1029/2018JB016004
Pritchard, 2004, An InSAR-based survey of volcanic deformation in the central Andes, Geochem. Geophys. Geosyst., 5, 1, 10.1029/2003GC000610
Biggs, 2009, Multiple inflation and deflation events at Kenyan volcanoes, East African Rift, Geology, 37, 979, 10.1130/G30133A.1
Biggs, 2014, Global link between deformation and volcanic eruption quantified by satellite imagery, Nat. Commun., 5, 3471, 10.1038/ncomms4471
Juncu, 2017, Anthropogenic and natural ground deformation in the Hengill geothermal area, Iceland, J. Geophys. Res. Solid Earth, 122, 692, 10.1002/2016JB013626
Maghsoudi, 2018, Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia, Int. J. Appl. Earth Obs. Geoinf., 64, 386
Temtime, 2018, Spatial and temporal patterns of deformation at the Tendaho geothermal prospect, Ethiopia, J. Volcanol. Geotherm. Res., 357, 56, 10.1016/j.jvolgeores.2018.04.004
Ardizzone, 2014, Enhanced landslide investigations through advanced DInSAR techniques: The ivancich case study, Assisi, Italy, Remote Sens. Environ., 142, 69, 10.1016/j.rse.2013.11.003
Lauknes, 2010, Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods, Remote Sens. Environ., 114, 2097, 10.1016/j.rse.2010.04.015
European Space Agency (2020, May 27). Sentinel 1 Observation Scenario. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario.
Elliott, 2016, The role of space-based observation in understanding and responding to active tectonics and earthquakes, Nat. Commun., 7, 13844, 10.1038/ncomms13844
Hooper, A., Wright, T.J., Spaans, K., Elliott, J., Weiss, J.R., Bagnardi, M., Hatton, E.L., Ebmeier, S.K., Gaddes, M., and Qiu, Q. (2018, January 22–27). Global monitoring of fault zones and volcanoes with Sentinel-1. Proceedings of the IGARSS 2018, Valencia, Spain.
Elliott, J. (2020). Earth Observation for the assessment of earthquake hazard, risk and disaster management. Surv. Geophys., under review.
Gaddes, 2019, Using machine learning to automatically detect volcanic unrest in a time series of interferograms, J. Geophys. Res. Solid Earth, 124, 12304, 10.1029/2019JB017519
Albino, 2019, Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung, Nat. Commun., 10, 748, 10.1038/s41467-019-08564-9
Zinno, I., Elefante, S., Luca, C.D., Manunta, M., Lanari, R., and Casu, F. (2015, January 26–31). New advances in intensive DInSAR processing through cloud computing environments. Proceedings of the IGARSS 2015, Milan, Italy.
Sentinel Application Platform (SNAP) (2020, February 12). Sentinel-1 Toolbox. Available online: https://step.esa.int/main/toolboxes/sentinel-1-toolbox/.
Rosen, P.A., Gurrola, E., Sacco, G.F., and Zebker, H. (2012, January 23–26). The InSAR scientific computing environment. Proceedings of the EUSAR 2012, Nuremberg, Germany.
Sandwell, 2011, Open radar interferometry software for mapping surface deformation, EOS Trans. AGU, 92, 234, 10.1029/2011EO280002
Hooper, 2004, A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett., 31, 1, 10.1029/2004GL021737
Werner, C., Wegmüller, U., Strozzi, T., and Wiesmann, A. (2000, January 16–20). Gamma SAR and interferometric processing software. Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden.
(2020, February 12). GAMMA Remote Sensing GAMMA Software Information. Available online: https://www.gamma-rs.ch/uploads/media/GAMMA_Software_information_02.pdf.
(2020, February 12). Harris-Geospatial ENVI SARscape—Read, Process, Analyze, and Output Products from SAR Data. Available online: https://www.harrisgeospatial.com/SoftwareTechnology/ENVISARscape.aspx.
SARPROZ (2020, February 12). SARPROZ—The SAR PROcessing Tool by PeriZ. Available online: https://www.sarproz.com/.
Lazecky, M., Hatton, E., Gonzalez, P.J., Hlavacova, I., Jirankova, E., Dvorak, F., Sustr, Z., and Martinovic, J. (2020). Displacements Monitoring over Czechia by IT4S1 System for Automatised Interferometric Measurements using Sentinel-1 Data. Remote Sens., under review.
Dong, 2019, Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects, Curr. Opin. Environ. Sustain., 38, 44, 10.1016/j.cosust.2019.05.003
Sudmanns, 2019, Big earth data: Disruptive changes in earth observation data management and analysis?, Int. J. Digit. Earth, 13, 832, 10.1080/17538947.2019.1585976
(2020, February 13). ESA Thematic Exploitation Platform. Available online: https://tep.eo.esa.int/home.
(2020, February 13). Geohazard Exploitation Platform (GEP). Available online: https://geohazards-tep.eu/.
(2020, February 13). ESA’s Grid Processing on Demand (G-POD) Environment. Available online: https://gpod.eo.esa.int/.
Galve, J.P., Pérez-Peña, J.V., Azañón, J.M., Closson, D., Caló, F., Reyes-Carmona, C., Jabaloy, A., Ruano, P., Mateos, R.M., and Notti, D. (2017). Evaluation of the SBAS InSAR service of the European space agency’s geohazard exploitation platform (GEP). Remote Sens., 9.
Bally, P., and Pinto, S. (2015, January 23–27). The Geohazards Exploitation Platform (GEP). Proceedings of the FRINGE 2015, Frascati, Italy.
Kreemer, 2003, An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154, 8, 10.1046/j.1365-246X.2003.01917.x
Bekaert, D.P., Karim, M., Linick, J.P., Hua, H., Sangha, S., Lucas, M., Malarout, N., Agram, P.S., Pan, L., and Owen, S.E. (2019, January 9–13). Development of open-access Standardized InSAR Displacement Products by the Advanced Rapid Imaging and Analysis (ARIA) Project for Natural Hazards. Proceedings of the AGU Fall Meeting 2019, San Francisco, CA, USA.
Werner, 2016, Sentinel-1 support in the GAMMA software, Procedia Comput. Sci., 100, 1305, 10.1016/j.procs.2016.09.246
Yu, 2018, Generic atmospheric correction model for interferometric synthetic aperture radar observations, J. Geophys. Res. Solid Earth, 123, 9202, 10.1029/2017JB015305
Weiss, 2020, High-Resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data, Geophys. Res. Lett., GL087376, 1
Wright, 2004, Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, 1, 10.1029/2003GL018827
Brcic, 2016, Interferometric Processing of Sentinel-1 TOPS Data, IEEE Trans. Geosci. Remote Sens., 54, 2220, 10.1109/TGRS.2015.2497902
Qin, Y., Perissin, D., and Bai, J. (2018). Investigations on the coregistration of Sentinel-1 TOPS with the conventional cross-correlation technique. Remote Sens., 10.
Chen, 2002, Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Trans. Geosci. Remote Sens., 40, 1709, 10.1109/TGRS.2002.802453
Goldstein, 1998, Radar interferogram filtering for geophysical applications, Geophys. Res. Lett., 25, 4035, 10.1029/1998GL900033
Hooper, A. (December, January 30). A statistical-cost approach to unwrapping the phase of InSAR time series. Proceedings of the International Workshop on ERS SAR Interferometry, Frascati, Italy.
USGS (2020, May 27). LIBCOMCAT. Available online: https://github.com/usgs/libcomcat/.
Lawrence, B.N., Kunkel, J.M., Churchill, J., Massey, N., Kershaw, P., and Pritchard, M. (2020, February 12). Beating Data Bottlenecks in Weather and Climate Science. Available online: https://www.bnlawrence.net/assets/papers/LawEA18.pdf.
Lawrence, B.N., Bennett, V.L., Churchill, J., Juckes, M., Kershaw, P., Pascoe, S., Pepler, S., Pritchard, M., and Stephens, A. (2013, January 6–9). Storing and manipulating environmental big data with JASMIN. Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA.
European Space Agency (2020, May 27). Sentinel 1A C-Band Synthetic Aperture Radar (SAR): Interferometric Wide (IW) Mode Single Look Complex (SLC) Level 1 Data. Available online: https://catalogue.ceda.ac.uk/uuid/f7014a8d35b648a5983a681fa346d8fc.
Venzke, E. (2020, July 27). Global Volcanism Program—Volcanoes of the World, v. 4.9.0 (04 June 2020). Available online: https://doi.org/10.5479/si.GVP.VOTW4-2013.
Styron, R. (2020, July 27). GEMScienceTools/gem-global-active-faults: First Release of 2019 (Version 2019.0). Available online: http://doi.org/10.5281/zenodo.3376300.
European Space Agency (2020, February 12). Sentinel-1 Strip Map Mode. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1/single-look-complex/stripmap.
Shen, 2019, A spatially varying scaling method for InSAR tropospheric corrections using a high-resolution weather model, J. Geophys. Res. Solid Earth, 124, 4051, 10.1029/2018JB016189
Morishita, Y., Lazecky, M., Wright, T.J., Weiss, J.R., Elliott, J.R., and Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens., 12.
Heimann, 2019, A python framework for efficient use of pre-computed green’s functions in seismological and other physical forward and inverse source problems, Solid Earth, 10, 1921, 10.5194/se-10-1921-2019
Hussain, 2016, Interseismic strain accumulation across the central North Anatolian fault from iteratively unwrapped InSAR measurements, J. Geophys. Res. Solid Earth, 121, 9000, 10.1002/2016JB013108
Emre, 2018, Active fault database of Turkey, Bull. Earthq. Eng., 16, 3229, 10.1007/s10518-016-0041-2
Gaddes, 2018, Blind signal separation methods for InSAR: The potential to automatically detect and monitor signals of volcanic deformation, J. Geophys. Res. Solid Earth, 123, 210, 10.1029/2018JB016210
Anantrasirichai, 2019, A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets, Remote Sens. Environ., 230, 111179, 10.1016/j.rse.2019.04.032
Anantrasirichai, 2019, The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series, Geophys. Res. Lett., 46, 11850, 10.1029/2019GL084993
Anantrasirichai, 2018, Application of machine learning to classification of volcanic deformation in routinely generated InSAR data, J. Geophys. Res. Solid Earth, 123, 6592, 10.1029/2018JB015911
Moore, 2019, The 2017 eruption of erta ‘ale volcano, ethiopia: Insights into the shallow axial plumbing system of an incipient mid-ocean ridge, Geochem. Geophys. Geosystems, 20, 5727, 10.1029/2019GC008692
Atwood, 2010, Using L-band SAR coherence to delineate glacier extent, Can. J. Remote Sens., 36, S186, 10.5589/m10-014