Level and course of FEV1 in relation to polymorphisms in NFE2L2 and KEAP1 in the general population

Respiratory Research - Tập 10 - Trang 1-12 - 2009
Mateusz Siedlinski1, Dirkje S Postma2, Jolanda MA Boer3, Gerrit van der Steege4, Jan P Schouten1, Henriette A Smit3, H Marike Boezen1
1Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen The Netherlands
2Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
3National Institute for Public Health and the Environment, Bilthoven, The Netherlands
4Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Tóm tắt

The metabolism of xenobiotics plays an essential role in smoking related lung function loss and development of Chronic Obstructive Pulmonary Disease. Nuclear Factor Erythroid 2-Like 2 (NFE2L2 or NRF2) and its cytosolic repressor Kelch-like ECH-associated protein-1 (KEAP1) regulate transcription of enzymes involved in cellular detoxification processes and Nfe2l2-deficient mice develop tobacco-induced emphysema. We assessed the impact of Single Nucleotide Polymorphisms (SNPs) in both genes on the level and longitudinal course of Forced Expiratory Volume in 1 second (FEV1) in the general population. Five NFE2L2 and three KEAP1 tagging SNPs were genotyped in the population-based Doetinchem cohort (n = 1,152) and the independent Vlagtwedde-Vlaardingen cohort (n = 1,390). On average 3 FEV1 measurements during 3 surveys, respectively 7 FEV1 measurements during 8 surveys were present. Linear Mixed Effect models were used to test cross-sectional and longitudinal genetic effects on repeated FEV1 measurements. In the Vlagtwedde-Vlaardingen cohort SNP rs11085735 in KEAP1 was associated with a higher FEV1 level (p = 0.02 for an additive effect), and SNP rs2364723 in NFE2L2 was associated with a lower FEV1 level (p = 0.06). The associations were even more significant in the pooled cohort analysis. No significant association of KEAP1 or NFE2L2 SNPs with FEV1 decline was observed. This is the first genetic study on variations in key antioxidant transcriptional regulators KEAP1 and NFE2L2 and lung function in a general population. It identified 2 SNPs in NFE2L2 and KEAP1 which affect the level of FEV1 in the general population. It additionally shows that NFE2L2 and KEAP1 variations are unlikely to play a role in the longitudinal course of FEV1 in the general population.

Tài liệu tham khảo

From the World Health Reports 2002 and 2003 (World Health Organisation) [http://www.who.int/whr/previous/en/index.html] Kueppers F, Miller RD, Gordon H, Hepper NG, Offord K: Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med 1977, 63:336–342. Redline S, Tishler PV, Rosner B, Lewitter FI, Vandenburgh M, Weiss ST, Speizer FE: Genotypic and phenotypic similarities in pulmonary function among family members of adult monozygotic and dizygotic twins. Am J Epidemiol 1989, 129:827–836. Silverman EK: Progress in chronic obstructive pulmonary disease genetics. Proc Am Thorac Soc 2006, 3:405–408. Hersh CP, DeMeo DL, Lange C, Litonjua AA, Reilly JJ, Kwiatkowski D, Laird N, Sylvia JS, Sparrow D, Speizer FE, Weiss ST, Silverman EK: Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol 2005, 33:71–78. Survival and FEV1 decline in individuals with severe deficiency of alpha1-antitrypsin. The Alpha-1-Antitrypsin Deficiency Registry Study Group Am J Respir Crit Care Med 1998, 158:49–59. DeMeo DL, Silverman EK: Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 2004, 59:259–264. Seersholm N, Kok-Jensen A, Dirksen A: Decline in FEV1 among patients with severe hereditary alpha 1-antitrypsin deficiency type PiZ. Am J Respir Crit Care Med 1995, 152:1922–1925. Juul K, Tybjaerg-Hansen A, Marklund S, Lange P, Nordestgaard BG: Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006, 173:858–864. Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD, Mills GD, Garrett JE, Eaton TE, Rees MI: Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 2006, 61:394–399. Guenegou A, Leynaert B, Benessiano J, Pin I, Demoly P, Neukirch F, Boczkowski J, Aubier M: Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France. J Med Genet 2006, 43:e43. Adair-Kirk TL, Atkinson JJ, Griffin GL, Watson MA, Kelley DG, DeMello D, Senior RM, Betsuyaku T: Distal airways in mice exposed to cigarette smoke: Nrf2-regulated genes are increased in Clara cells. Am J Respir Cell Mol Biol 2008, 39:400–411. Pierrou S, Broberg P, O'Donnell RA, Pawlowski K, Virtala R, Lindqvist E, Richter A, Wilson SJ, Angco G, Moller S, Bergstrand H, Koopmann W, Wieslander E, Strömstedt PE, Holgate ST, Davies DE, Lund J, Djukanovic R: Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007, 175:577–586. Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA: Nrf2, a multi-organ protector? FASEB J 2005, 19:1061–1066. Cho HY, Reddy SP, Kleeberger SR: Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 2006, 8:76–87. Kobayashi A, Ohta T, Yamamoto M: Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol 2004, 378:273–286. Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Iizuka T, Hegab AE, Hosoya T, Nomura A, Sakamoto T, Yamamoto M, Sekizawa K: Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol 2005, 175:6968–6975. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma S, Nomura A, Sakamoto T, Shimura M, Yoshida A, Yamamoto M, Sekizawa K: Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 2005, 10:1113–1125. Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, Crestani B, Fournier M, Leseche G, Soler P, Boczkowski J, Bonay M: Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 2008, 63:916–924. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, Kondo S, Nishimura M: Downregulated NF-E2-related Factor 2 in Pulmonary Macrophages of Aged Smokers and COPD Patients. Am J Respir Cell Mol Biol 2008, 39:673–682. Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, Tuder RM, Biswal S: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008, 178:592–604. Yamamoto T, Yoh K, Kobayashi A, Ishii Y, Kure S, Koyama A, Sakamoto T, Sekizawa K, Motohashi H, Yamamoto M: Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem Biophys Res Commun 2004, 321:72–79. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, Aplenc R, Yamamoto T, Yamamoto M, Cho HY, Kleeberger SR: Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 2007, 21:2237–2246. Anto JM, Vermeire P, Vestbo J, Sunyer J: Epidemiology of chronic obstructive pulmonary disease. Eur Respir J 2001, 17:982–994. Verschuren W, Blokstra A, Picavet H, Smit H: Cohort Profile: The Doetinchem Cohort Study. Int J Epidemiol 2008, 37:1236–1241. Grievink L, Smit HA, Ocke MC, van't Veer P, Kromhout D: Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax 1998, 53:166–171. Siedlinski M, Postma DS, van Diemen CC, Blokstra A, Smit HA, Boezen HM: Lung function loss, smoking, vitamin C intake and polymorphisms of the glutamate-cysteine ligase genes. Am J Respir Crit Care Med 2008, 178:13–19. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC: Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 1993, 16:5–40. van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Schouten JP, Boezen HM: A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 2005, 172:329–333. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263–265. Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68:978–989. Stephens M, Scheet P: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005, 76:449–462. Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG: Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol 2006, 6:50. Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KGM: MIX: comprehensive free software for meta-analysis of causal research data. Version 1.7. Genetic information from the British 1958 Birth Cohort [http://www.b58cgene.sgul.ac.uk/] Siedlinski M, van Diemen CC, Postma DS, Boezen HM: Heme oxygenase 1 variations and lung function decline in smokers: proof of replication. J Med Genet 2008, 45:400.