Length scales and scale-free dynamics of dislocations in dense solid solutions

Materials Theory - Tập 4 - Trang 1-25 - 2020
Gábor Péterffy1, Péter D. Ispánovity1, Michael E. Foster2, Xiaowang Zhou2, Ryan B. Sills3
1Department of Materials Physics, Eötvös Loránd University, Budapest, Hungary
2Sandia National Laboratories, Livermore, USA
3Department of Materials Science and Engineering, Rutgers University, Piscataway, USA

Tóm tắt

The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe0.70Ni0.11Cr0.19 over a range of stresses and temperatures. These roughness profiles reveal the hallmark features of a depinning transition. Namely, below a temperature-dependent critical stress, the dislocation line exhibits roughness in two different length scale regimes which are divided by a so-called correlation length. This correlation length increases with applied stress and at the critical stress (depinning transition or yield stress) formally goes to infinity. Above the critical stress, the line roughness profile converges to that of a random noise field. Motivated by these results, a physical model is developed based on the notion of coherent line bowing over all length scales below the correlation length. Above the correlation length, the solute field prohibits such coherent line bow outs. Using this model, we identify potential gaps in existing theories of solid solution strengthening and show that recent observations of length-dependent dislocation mobilities can be rationalized.

Tài liệu tham khảo

H. Ahammer, Higuchi dimension of digital images. PLOS ONE. 6(9), 1–8 (2011). https://doi.org/10.1371/journal.pone.0024796. A. H. H. Al-Nuaimi, E. Jammeh, L. Sun, E. Ifeachor, Complexity measures for quantifying changes in electroencephalogram in alzheimer’s disease. Complex.2018:, 33 (2018). https://doi.org/10.1155/2018/8915079. A. J. Ardell, Precipitation hardening. Metall Mater Trans A. 16:, 2131–2165. https://doi.org/10.1007/BF02670416. A. S. Argon, Strengthening mechanisms in crystal plasticity. Oxford Series on Materials Modelling vol. 4 (Oxford University Press, Oxford ; New York, 2008). B. Bakó, D. Weygand, M. Samaras, W. Hoffelner, M. Zaiser, Dislocation depinning transition in a dispersion-strengthened steel. Phys. Rev. B. 78(14), 144104 (2008). V. V. Bulatov, W. Cai, Computer simulations of dislocations. vol. 3 (Oxford University Press Inc., New York, United States, 2006). S. Bustingorry, A. Kolton, T. Giamarchi, Random-manifold to random-periodic depinning of an elastic interface. Phys. Rev. B. 82(9), 094202 (2010). S. Bustingorry, A. Kolton, T. Giamarchi, Thermal rounding of the depinning transition in ultrathin pt/co/pt films. Phys. Rev. B. 85(21), 214416 (2012). P. Chauve, T. Giamarchi, P. Le Doussal, Creep and depinning in disordered media. Phys. Rev. B. 62(10), 6241 (2000). P. Daguier, B. Nghiem, E. Bouchaud, F. Creuzet, Pinning and depinning of crack fronts in heterogeneous materials. Phys. Rev. Lett.78(6), 1062 (1997). O. Duemmer, W. Krauth, Critical exponents of the driven elastic string in a disordered medium. Phys. Rev. E. 71(6), 061601 (2005). G. Durin, S. Zapperi, Scaling exponents for barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. Lett.84(20), 4705 (2000). D. S. Fisher, Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B. 31(3), 1396 (1985). D. S. Fisher, Collective transport in random media: from superconductors to earthquakes. Phys. Rep.301:, 113–150 (1998). D. S. Fisher, K. Dahmen, S. Ramanathan, Y. Ben-Zion, Statistics of earthquakes in simple models of heterogeneous faults. Phys. Rev. Lett.78(25), 4885 (1997). R. L. Fleischer, Substitutional solution hardening. Acta Metall.11(3), 203–209 (1963). https://doi.org/10.1016/0001-6160(63)90213-X. J. Freidel, Dislocations (Pergamon, Oxford, 1964). https://doi.org/10.1016/C2013-0-02250-5. N. Friedman, A. T. Jennings, G. Tsekenis, J. -Y. Kim, M. Tao, J. T. Uhl, J. R. Greer, K. A. Dahmen, Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett.109(9), 095507 (2012). G. Gálvez-Coyt, A. Muñoz-Diosdado, J. A. Peralta, J. A. Balderas-López, F. Angulo-Brown, Parameters of higuchi’s method to characterize primary waves in some seismograms from the mexican subduction zone. Acta Geophys.60(3), 910–927 (2012). https://doi.org/10.2478/s11600-012-0033-9. P. -A. Geslin, D. Rodney, Thermal fluctuations of dislocations reveal the interplay between their core energy and long-range elasticity. Phys. Rev. B. 98(17), 174115 (2018). R. S. Gomolka, S. Kampusch, E. Kaniusas, F. Th?rk, J. C. Sz?les, W. Klonowski, Higuchi fractal dimension of heart rate variability during percutaneous auricular vagus nerve stimulation in healthy and diabetic subjects. Front. Physiol.9:, 1162 (2018). M. P. Grassi, A. B. Kolton, V. Jeudy, A. Mougin, S. Bustingorry, J. Curiale, Intermittent collective dynamics of domain walls in the creep regime. Phys. Rev. B. 98(22), 224201 (2018). T. Higuchi, Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom.31(2), 277–283 (1988). https://doi.org/10.1016/0167-2789(88)90081-4. M. Hiratani, H. Zbib, On dislocation–defect interactions and patterning: stochastic discrete dislocation dynamics (sdd). J. Nucl. Mater.323:, 290–303 (2003). P. D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M. J. Alava, Avalanches in 2d dislocation systems: Plastic yielding is not depinning. Phys. Rev. Lett.112(23), 235501 (2014). M. Itakura, H. Kaburaki, M. Yamaguchi, T. Okita, The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater.61(18), 6857–6867 (2013). https://doi.org/10.1016/j.actamat.2013.07.064. I. H. Katzarov, D. L. Pashov, A. T. Paxton, Hydrogen embrittlement I, Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α -Fe. Phys. Rev. Mater.1(3), 033602 (2017). https://doi.org/10.1103/PhysRevMaterials.1.033602. J. B. Ketterson, The physics of solids, First edition edn (Oxford University Press, Oxford, United Kingdom, 2016). H. Krakovská, A. Krakovská, Fractal dimension of self-affine signals: four methods of estimation (2016). http://arxiv.org/abs/1611.06190. Accessed: 19th Feb 2020. D. P. Kroese, Z. I. Botev, in Stochastic Geometry, Spatial Statistics and Random Fields. Spatial process simulation (Springer International Publishing Switzerland, 2015), pp. 369–404. R. Labusch, A statistical theory of solid solution hardening. Phys. Status Solidi (b). 41(2), 659–669 (1970). https://doi.org/10.1002/pssb.19700410221. A. Lehtinen, G. Costantini, M. J. Alava, S. Zapperi, L. Laurson, Glassy features of crystal plasticity. Phys. Rev. B. 94(6), 064101 (2016). G. P. M. Leyson, W. A. Curtin, Friedel vs. Labusch: The strong/weak pinning transition in solute strengthened metals. Phil. Mag.93(19), 2428–2444 (2013). https://doi.org/10.1080/14786435.2013.776718. G. P. M. Leyson, W. A. Curtin, Solute strengthening at high temperatures. Model. Simul. Mater. Sci. Eng.24(6), 065005 (2016). https://doi.org/10.1088/0965-0393/24/6/065005. G. P. M. Leyson, W. A. Curtin, L. G. Hector, C. F. Woodward, Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater.9(9), 750–755 (2010). https://doi.org/10.1038/nmat2813. G. P. M. Leyson, L. G. Hector, W. A. Curtin, Solute strengthening from first principles and application to aluminum alloys. Acta Mater.60(9), 3873–3884 (2012). https://doi.org/10.1016/j.actamat.2012.03.037. L. Liehr, P. Massopust, On the mathematical validity of the higuchi method. Phys. D Nonlinear Phenom.402:, 132265 (2020). https://doi.org/10.1016/j.physd.2019.132265. J. Marian, A. Caro, Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations. Phys. Rev. B. 74(2), 024113 (2006). https://doi.org/10.1103/PhysRevB.74.024113. N. Martys, M. Cieplak, M. O. Robbins, Critical phenomena in fluid invasion of porous media. Phys. Rev. Lett.66(8), 1058 (1991). N. F. Mott, in Imperfections in Nearly Perfect Crystals, ed. by W. Shockley, J. H. Hollomon, R. Maurer, and F. Setz. Mechanical strength and creep in metals (WileyNew York, 1952), pp. 173–196. D. L. Olmsted, L. G. HectorJr, W. A. Curtin, R. J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng.13(3), 371–388 (2005). https://doi.org/10.1088/0965-0393/13/3/007. Y. N. Osetsky, G. M. Pharr, J. R. Morris, Two modes of screw dislocation glide in fcc single-phase concentrated alloys. Acta Mater.164:, 741–748 (2019). https://doi.org/10.1016/j.actamat.2018.11.020. S. Patinet, D. Bonamy, L. Proville, Atomic-scale avalanche along a dislocation in a random alloy. Phys. Rev. B. 84(17), 174101 (2011). https://doi.org/10.1103/PhysRevB.84.174101. V. H. Purrello, J. L. Iguain, A. B. Kolton, E. A. Jagla, Creep and thermal rounding close to the elastic depinning threshold. Phys. Rev. E. 96(2), 022112 (2017). E. Rodary, D. Rodney, L. Proville, Y. Bréchet, G. Martin, Dislocation glide in model Ni (Al) solid solutions by molecular dynamics. Phys. Rev. B. 70(5), 054111 (2004). https://doi.org/10.1103/PhysRevB.70.054111. R. B. Sills, M. E. Foster, X. Zhou, Line-length- dependent dislocation mobilities in an FCC stainless steel alloy. Int. J. Plast.135:, 102791 (2020). R. B. Sills, W. P. Kuykendall, A. Aghaei, W. Cai, in Multiscale Materials Modeling for Nanomechanics, vol. 245, ed. by C. R. Weinberger, G. J. Tucker. Fundamentals of dislocation dynamics simulations (Springer International PublishingCham, 2016), pp. 53–87. https://doi.org/10.1007/978-3-319-33480-6\_2. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng.18(1), 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012. A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng.18(8), 085001 (2010). https://doi.org/10.1088/0965-0393/18/8/085001. G. Tsekenis, J. T. Uhl, N. Goldenfeld, K. A. Dahmen, Determination of the universality class of crystal plasticity. EPL (Europhys. Lett.)101(3), 36003 (2013). C. Varvenne, G. P. M. Leyson, M. Ghazisaeidi, W. A. Curtin, Solute strengthening in random alloys. Acta Mater.124:, 660–683 (2017). https://doi.org/10.1016/j.actamat.2016.09.046. C. Varvenne, A. Luque, W. A. Curtin, Theory of strengthening in fcc high entropy alloys. Acta Mater.118:, 164–176 (2016). https://doi.org/10.1016/j.actamat.2016.07.040. R. Wajnsztejn, T. D. de Carvalho, D. M. Garner, R. D. Raimundo, L. C. M. Vanderlei, M. F. de Godoy, C. Ferreira, V. E. Valenti, L. C. de Abreu, Higuchi fractal dimension applied to rr intervals in children with attention defi cit hyperactivity disorder. J. Hum. Growth Dev.26:, 147–153 (2016). M. Zaiser, Scale invariance in plastic flow of crystalline solids. Adv. Phys.55:, 185–245 (2006). S. Zapperi, P. Cizeau, G. Durin, H. E. Stanley, Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the barkhausen effect. Phys. Rev. B. 58(10), 6353 (1998). S. Zapperi, M. Zaiser, Depinning of a dislocation: the influence of long-range interactions. Mater. Sci. Eng. A. 309:, 348–351 (2001). J. -H. Zhai, M. Zaiser, Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Eng. A. 740:, 285–294 (2019). S. Zhao, Y. N. Osetsky, Y. Zhang, Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. J. Alloys Compd.701:, 1003–1008 (2017). https://doi.org/10.1016/j.jallcom.2017.01.165. X. W. Zhou, M. E. Foster, R. B. Sills, An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems: An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems. J. Comput. Chem.39(29), 2420–2431 (2018). https://doi.org/10.1002/jcc.25573.