Học hỏi từ những tai nạn? Sự giảm nguy cơ ngừng hoạt động không dự kiến tại các nhà máy điện hạt nhân của Hoa Kỳ sau sự cố Three Mile Island

Springer Science and Business Media LLC - Tập 13 - Trang 175-198 - 1996
Paul A. David1,2, Roland Maude-Griffin, Geoffrey Rothwell
1Stanford University, Oxford
2All Souls College, Oxford

Tóm tắt

Nghiên cứu này sử dụng mô hình nguy cơ tỷ lệ Cox để phân tích sự thay đổi trong nguy cơ ngừng hoạt động không dự kiến tại các nhà máy điện hạt nhân của Hoa Kỳ sau sự cố Three Mile Island (TMI). Nguy cơ ngừng hoạt động không dự kiến có liên quan đến an toàn bởi thực tế rằng phần lớn các sự cố ngừng hoạt động như vậy bắt đầu bằng việc reactor tự động ngừng hoạt động không dự kiến. Những tình huống này gây ra áp lực cực lớn lên thiết bị nhà máy, làm tăng nguy cơ xảy ra tai nạn nghiêm trọng. Các ước tính chỉ ra rằng những nỗ lực do Ủy ban Điều tiết Hạt nhân (NRC) dẫn đầu nhằm cải thiện an toàn cho các nhà máy điện hạt nhân sau sự cố TMI đã dẫn đến sự giảm đáng kể trong nguy cơ ngừng hoạt động không dự kiến.

Từ khóa

#sự cố hạt nhân #an toàn nhà máy điện hạt nhân #Ủy ban Điều tiết Hạt nhân #nguy cơ ngừng hoạt động không dự kiến #mô hình Cox

Tài liệu tham khảo

AndersonP. K. (1982). “Testing Goodness of Fit in Cox's Regression and Life Model,”Biometrics 38, 67–77. BaerT. (1992). “Safety at a Glance: Upgrading the Displays in a Nuclear Plant Control Room,”Mechanical Engineering 114, 56–60. BreslowN. E. (1974). “Covariance Analysis of Censored Survival Data,”Biometrics 30, 89–99. CletcherJ. W. (1989). “Reactor Shutdown Experience,”Nuclear Safety 30, 265–267. CookJ. (1986). “INPO's Race Against Time,”Forbes 137(4), 54–58. CoxD. R. (1972). “Regression Models and Life-Tables (with Discussion),”Journal of the Royal Statistical Society, Series B, 34, 187–220. CoxD. R. (1975). “Partial Likelihood,”Biometrika 62, 269–276. National Research Council (1992).Nuclear Power: Technical and Institutional Options for the Future. Washington: National Academy of Sciences. CunninghamA. M. (1989). “Ten Years After: Cleaning Up Three Mile Island,”Technology Review 92, 18–20. David, P. A., and G. S. Rothwell. (1996). “Measuring Standardization: An Application to the American and French Nuclear Power Industries,”European Journal of Political Economy (forthcoming). DentonH. R. (1987). “Reactor Scrams in the U.S.A.: A Regulators Point of View.” InProceedings of an NEA Symposium on Reducing the Frequency of Reactor Scrams. Paris: OECD. DredemisG., and B.Fourest (1987). “Reactor Scrams, Why a Safety Concern?” InProceedings of an NEA Symposium on Reducing the Frequency of Reactor Scrams. Paris: OECD. DubinJ. A., and G. S.Rothwell (1989). “Risk and Reactor Safety System Adoption,”Journal of Econometrics 42, 201–18. EasterlingR. G. (1982). “Statistical Analysis of U.S. Power Plant Capacity Factors Through 1979,”Energy 7, 253–258. FeinsteinJ. S. (1989). “The Safety Regulation of U.S. Nuclear Power Plants: Violations, Inspections, and Abnormal Occurrences,”Journal of Political Economy 97, 115–154. GonsalvesJ. B. (1987). “Census and Analysis of the Population of Continuous, Real-Time Simulators in the Nuclear Power Plant Industry.” InProceedings of the Society for Computer Simulation Simulators Conference. San Diego, CA: Society for Computer Simulation. HorowitzJ. L., and G. R.Neumann (1992). “A Generalized Moments Specification Test of the Proportional Hazards Model,”Journal of the American Statistical Association 87, 234–240. JordanE. L. et al. (1988). “Safety System Challenges in US Commercial Power Reactors,” InNuclear Power Performance and Safety, Volume 2:Achievements in Construction and Operation. Vienna: International Atomic Energy Agency. JoskowP., and G. A.Rozanki. (1979). “The Effects of Learning by Doing on Nuclear Plant Operating Reliability,”Review of Economics and Statistics 61, 161–168. KalbfleischJ. D., and R. L.Prentice. (1980).The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons. KrautmanA. C., and J. L.Solow. (1992). “Nuclear Power Plant Performance: The Post Three Mile Island Era,”Energy Economics 14 209–216. LesterR. K., and M. J.McCabe. (1993). “The Effect of Industrial Structure on Learning by Doing in Nuclear Power Plant Operation,”Rand Journal of Economics 24, 418–438. LipfordB. L., N. M.Cole, and T. J.Friderichs. (1991). “Three Mile Island Revisited,”Mechanical Engineering 113(1), 42–47. MarcusA. A. (1988). “Implementing Externally Induced Innovations: A Comparison of Rule-Bound and Autonomous Approaches,”Academy of Management Journal 31, 235–256. MooreC. E. (1989). “INPO Programs for Improvement of Nuclear Power Plant Operations.” InProceedings of an NEA Symposium on Good Performance in Nuclear Projects. Paris: OECD. MoreauT., J.O'Quigley, and M.Mesbah. (1985). “A Global Goodness of Fit Test for the Proportional Hazards Regression Model,”Applied Statistics 34, 212–218. Morimoto, K. (1986). “Comparing International Scram Frequency Statistics,”Nuclear Engineering International (September), 43–42. MurleyT. E. (1990). “Developments in Nuclear Safety,”Nuclear Safety 31, 1–9. MurphyJ. A., M. A.Cunningham, and M. T.Leonard. (1988). “NUREG-1150: The Reactor Risk Reference Document Results and Regulatory Applications.” InNuclear Power Performance and Safety, Volume 4:Safety Technology. Vienna: International Atomic Energy Agency. PateZ. T. (1988). “U.S. Nuclear Utility Industry Today: Progress Since TMI,”Nuclear Engineer 29, 171–174. PerrowC. (1984).Normal Acidents: Living with High Risk Technologies. New York: Basic Books. RothwellG. S. (1990). “Utilization and Service: Decomposing Nuclear Reactor Capacity Factors,”Resources and Energy 12, 215–229. Rothwell, G. S. (1996). “Organizational Structure and Expected Output for Nuclear Power Plants,”Review of Economics and Statistics (forthcoming). RustJ., and G. S.Rothwell (1995). “Optimal Response to a Shift in Regulatory Regime: The Case of the US Nuclear Industry,”Journal of Applied Econometrics 10, S75-S118. SchoenfeldD. (1980). “Chi-Square Goddness of Fit Tests for the Proportional Hazards Regression Model,”Biometrika 69, 145–153. Sturm, R. (1991). “Reliability and Maintenance in European Nuclear Power Plants: A Structural Analysis of a Controlled Stochastic Process.” Unpublished doctoral dissertation, Stanford University. SturmR. (1993). “Nuclear Power in Eastern Europe: Learning or Forgetting Curves?”Energy Economics 15, 183–188. ThomasS. D. (1988).The Realities of Nuclear Power: International Economic and Regulatory Experience. Cambridge: Cambridge University Press. TsiatisA. A. (1981). “A Large Sample Study of Cox's Regression Model,”The Annals of Statistics 9, 93–108. U.S. Nuclear Regulatory Commission (1975).Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, NUREG-75/014 (WASH-1400). Washington: U.S. Government Printing Office. U.S. Regulatory Commission. (monthly from January 1976 to December 1991).Licensed Operating Reactors Summary Status Report (NUREG-0020). Washington: U.S. Government Printing Office. U.S. Regulatory Commission. (1980).NRC Action Plan Developed as a Result of the TMI-2 Accident (NUREG-0660). Washington: U.S. Government Printing Office. U.S. Regulatory Commission. (1980).Clarification of the TMI Action Plan Requirements (NUREG-0737). Washington: U.S. Government Printing Office. U.S. Regulatory Commission. (1981).Guidelines for Control Room Design Reviews (NUREG-0700). Washington: U.S. Government Printing Office. U.S. Regulatory Commission. (1989).Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants (NUREG-1150). Washington: U.S. Government Printing Office. WarrockA. (1987). “Boston Edison's Pilgrim Plant: New Blood, Persistent Problems,”New England Business 9(14), 39–40. WiegleH. R. (1986). “Nuclear Plant Scram Reduction.” InInstrumentation in the Power Industry: Proceeding of the Twenty-ninth Power Instrumentation Symposium. Research Triangle Park, NC: ISA. YatesM. (1988). “TVA: A Need for Accountability?”Public Utilities Fortnightly 121(10), 39–41.