Lead Replacement in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskites

Advanced Electronic Materials - Tập 1 Số 10 - 2015
Kan Wang1,2, Ziqi Liang3, Xinqiang Wang1, Xudong Cui2
1Department of Physics, Chongqing University, Chongqing, 401331, China
2Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900, China
3Department of Materials Science, Fudan University, Shanghai 200433, China

Tóm tắt

Superior photovoltaic performance in organic–inorganic hybrid perovskite is based on the unique properties of each moiety contined within it. Identifying the role of metal atoms in the perovskite is of great importance to explore the low‐toxicity lead‐free perovskite solar cells. By using the first‐principle calculations, four types of AMX3 (A = CH3NH3, M = Pb, Sn, Ge, Sr, X = I) perovskite materials are investigated and an attempt is made to understand the structural and electronic influences of the metal atoms on the properties of perovskites. Then, the solutions to the replacement of Pb are discussed. It is found that for the small radius metal atoms as compared with Pb, the strong geometry distortion will result in a less p–p electron transition and larger carrier effective mass. The outer ns2 electrons of the metal ions play critical roles on the modulation of the optical and electronic properties for perovskite materials. These findings suggest that the solutions to the Pb replacement might be metal or metallic clusters that have effective ionic radius and outer ns2 electrons configuration on the metal ions with low ionization energy similar to Pb2+. Based on this, lead‐free perovskite solar cells are expected to be realized in the near future.

Từ khóa


Tài liệu tham khảo

10.1038/nmat4065

10.1016/j.mattod.2013.12.002

10.1038/nphoton.2014.134

10.1039/C3EE43161D

10.1126/science.1254050

10.1021/ja809598r

Research Cell Efficiency Records http://www.nrel.gov/ncpv/(accessed: January2015).

10.1021/ja511198f

10.1103/PhysRevB.89.125203

10.1021/jp4048659

10.1038/srep04467

10.1038/nphys3357

10.1038/nphoton.2014.284

10.1021/jz500480m

10.1021/jz4023865

10.1126/science.1243982

10.1126/science.1243167

10.1039/C4EE00673A

10.1021/jp504479c

10.1021/cm5032046

10.1039/C4EE02988G

10.1103/PhysRevB.77.235214

10.1021/ic401215x

10.1021/nl503494y

10.1021/nl500390f

10.1021/jp509460h

10.1021/cm503828b

10.1039/c3ta10518k

10.1002/adma.201401641

10.1038/nphoton.2014.82

10.1039/C4EE01076K

10.1007/BF01507527

10.1021/jp402148y

10.1002/adma.201306281

10.1016/0927-0256(96)00008-0

10.1103/PhysRevB.54.11169

10.1103/PhysRevB.59.1758

10.1103/PhysRevLett.77.3865

F.Brivio J. M.Frost J. M.Skelton A. J.Jackson O. J.Weber M. T.Weller A. R.Goni A. M. A.Leguy P. R. F.Barnes A.Walsh arXiv:1504.07508.

10.1021/jp402046t

Wikipedia contributors “Ionization energies of the elements (data page) ” Wikipedia The Free Encyclopedia http://en.wikipedia.org/w/index.php?title=Ionization_energies_of_the_elements_(data_page)&oldid=625624337(accessed: January2015).

10.1021/jacs.5b01025

10.1021/ic5025795