Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

Scientific Reports - Tập 2 Số 1
Hui‐Seon Kim1, Chang-Ryul Lee1, Jeong‐Hyeok Im1, Ki Beom Lee1, Thomas Moehl2, Arianna Marchioro2, Soo‐Jin Moon2, Robin Humphry‐Baker2, Jun‐Ho Yum2, Jacques‐E. Moser2, Michaël Grätzel2, Nam‐Gyu Park1
1‡School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea.
2Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

Kruger, J. et al. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085–2087 (2001).

Snaith, H. J. et al. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett. 7, 3372–3376 (2007).

Grätzel, M. Dye-sensitized solid-state heterojunction solar cells. Mater. Res. Bull. 30, 23–27 (2005).

Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009).

Schmidt-Mende, L. & Grätzel, M. TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500, 296–301 (2006).

Snaith, H. J., Petrozza, A., Ito, S., Miura, H. & Grätzel, M. Charge generation and photovoltaic operation of solid-state dye-sensitized solar cells incorporating a high extinction coefficient indolene-based sensitizer. Adv. Funct. Mater. 19, 1810–1818 (2009).

Moon, S.-J. et al. Highly efficient organic sensitizers for solid-state dye-sensitized solar cells. J. Phys. Chem. C 113, 16816–16820 (2009).

Cai, N. et al. An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11, 1452–1456 (2011).

Plass, R., Pelet, S., Krueger, J., Grätzel, M. & Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002).

Moon, S.-J. et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor. J. Phys. Chem. Lett. 1, 1524–1527 (2010).

Chang, J. A. et al. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010).

Chang, J. A. et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863−1867 (2012).

Hodes, G. & Cahen, D. All-solid-state, semiconductor-sensitized nanoporous solar cells. Acc. Chem. Res. 45, 705–713 (2012).

Xu, C., Wu, J., Desai, U. V. & Gao, D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays.Nano Lett. 12, 2420–2424 (2012).

Burschka, J. et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133, 18042–18045 (2011).

Jang, S.-R. et al. Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells. ACS Nano 5, 8267–8274 (2011).

Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka. T. . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

Lin, H. et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B-Environ. 68, 1–11 (2006).

Koster, L. J. A., Mihailetchi, V. D., Xie, H. & Blom, P. W. M. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 87, 203502 (2005).

Snaith, H. J., Schmidt-Mende, L. & Grätzel. M. . Light intensity, temperature and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells. Phys. Rev. B 74, 045306 (2006).

Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Sero, I. & Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011).

Odier, P., Rifflet, J. C. & Loup, J. P. Electron emission measurements and the defect structure of α-Al2O3 . J. Mater. Sci. 19, 2121–2135 (1984).

Park, J. et al. On the I–V measurement of dye-sensitized solar cell: effect of cell geometry on photovoltaic parameters. Sol. Energy Mater. Sol. Cells 91, 1749–1754 (2007).

Lee, G.-W., Kim, D. H., Ko, M. J., Kim, K. K. & Park, N.-G. Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells. Solar Energy 84, 418–425 (2010).