Law of the iterated logarithm for the periodogram
Tài liệu tham khảo
Bingham, 2012, Szegö’s theorem and its probabilistic descendants, Probab. Surv., 9, 287, 10.1214/11-PS178
Brockwell, 1991
Browder, 1958, On the iteration of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc., 9, 773, 10.1090/S0002-9939-1958-0096975-9
Carleson, 1966, On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135, 10.1007/BF02392815
Cuny, 2004, Weak mixing of random walks on groups, J. Theoret. Probab., 16, 923, 10.1023/B:JOTP.0000012000.54810.d2
Cuny, 2011, Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes, Stoch. Dyn., 1, 135, 10.1142/S0219493711003206
C. Cuny, ASIP for martingales in 2-smooth Banach spaces, applications to stationary processes, 2012. arXiv: 1209.3680.
C. Cuny, F. Merlevède, Strong invariance principles with rate for “reverse” martingales and applications, 2012. arXiv: 1209.3677.
Dedecker, 2010, Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains, Ann. Inst. Henri Poincaré Probab. Statist., 46, 796, 10.1214/09-AIHP343
Dedecker, 2000, On the functional central limit theorem for stationary processes, Ann. Inst. Henri Poincaré Probab. Statist., 36, 1, 10.1016/S0246-0203(00)00111-4
Diaconis, 1999, Iterated random functions, SIAM Rev., 41, 45, 10.1137/S0036144598338446
Duflo, 1996
Dunford, 1988
Gordin, 1969, The central limit theorem for stationary processes, Sov. Math. Dokl., 10, 1174
M.I. Gordin, B.A. Lifschits, A remark about a Markov process with normal transition operator, in: Third Vilnius Conf. Proba. Stat., Akad. Nauk Litovsk, Vilnius, Vol. 1, 1981, pp. 147–148 (in Russian).
Heyde, 1973, Invariance principles for the paw of the iterated logarithm for martingales and processes with stationary increments, Ann. Probab., 1, 428, 10.1214/aop/1176996937
Hunt, 1974, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc., 80, 274, 10.1090/S0002-9904-1974-13458-0
Merlevède, 2006, Recent advances in invariance principles for stationary sequences, Probab. Surv., 3, 1, 10.1214/154957806100000202
Merlevède, 2012, Strong approximation of partial sums under dependence conditions with application to dynamical systems, Stoch. Proc. Appl., 122, 386, 10.1016/j.spa.2011.08.012
Peligrad, 2010, Central limit theorem for Fourier transforms of stationary processes, Ann. Probab., 38, 2009, 10.1214/10-AOP530
Petersen, 1989, vol. 2
Philipp, 1977, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab., 5, 319, 10.1214/aop/1176995795
Pomeau, 1980, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74, 189, 10.1007/BF01197757
Rio, 2000, vol. 31
Rootzén, 1976, Gordin’s theorem and the periodogram, J. Appl. Probab., 13, 365, 10.1017/S0021900200094456
Rosenblatt, 1956, A central limit theorem and a strong mixing condition, Proc. Natl. Acad. Sci. USA, 42, 43, 10.1073/pnas.42.1.43
Rosenblatt, 1981, Limit theorems for Fourier transforms of functionals of Gaussian sequences, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 55, 123, 10.1007/BF00535155
Schuster, 1898, On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, Terr. Magn. Atmos. Electr., 3, 13, 10.1029/TM003i001p00013
Wiener, 1941, On the ergodic dynamics of almost periodic systems, Amer. J. Math., 63, 794, 10.2307/2371623
Woodroofe, 1992, A central limit theorem for functions of a Markov chain with applications to shifts, Stochastic Process. Appl., 41, 33, 10.1016/0304-4149(92)90145-G
Wu, 2005, Fourier transforms of stationary processes, Proc. Amer. Math. Soc., 133, 285, 10.1090/S0002-9939-04-07528-8