Lattice reduction aided MMSE Tomlinson-Harashima precoding based on VBLAST algorithm for MIMO systems
Tóm tắt
A lattice reduction aided (LRA) minimum mean square error (MMSE) Tomlinson-Harashima precoding (THP) was proposed based on vertical Bell Labs layered space time (VBLAST) algorithm for multiple input multiple output (MIMO) systems. The extended channel was used to provide optimal tradeoff between residual interference and noise amplification. The processing based on lattice reduction method helps achieve maximal diversity order. The VBLAST algorithm was applied to get the optimal processing ordering for successive interference cancellation (SIC) at transmitter. Simulation results show that the proposed algorithm outperforms conventional THP and the LRA zero-forcing (ZF) THP with full diversity order.
Tài liệu tham khảo
Telatar E. Capacity of multi-antenna Gaussian channels [J]. European Trans Telecommunication, 1999, 10(6): 585–596.
Goldsmith A J, Jafar S A, Jindal N, et al. Capacity limits of MIMO channels [J]. IEEE J Selected Areas Communications, 2003, 21(5): 684–702.
Viswanath P, Tse D N C. Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality [J]. IEEE Trans Information Theory, 2003, 49(8):1912–1921.
Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Laboratories Technical Journal, 1996, 1(2): 41–59.
Tomlinson M. New automatic equaliser employing modulo arithmetic [J]. IEE Electronics Letters, 1971, 7(5): 138–139.
Harashima H, Miyakawa H. Matched-transmission technique for channels with intersymbol interference [J]. IEEE Trans Communications, 1972, 20(4): 774–780.
Windpassinger C, Fischer R F H, Vencel T, et al. Precoding in multiantenna and multiuser communications [J]. IEEE Trans Wireless Communications, 2004, 3(4):1305–1316.
Lenstra A K, Lenstra H W, Lovàsz L. Factoring polynomials with rational coefficients [J]. Mathematische Annalen, 1982, 261(4): 515–534.
Yao H, Wornell G W. Lattice-reduction-aided detectors for MIMO communication systems[C]//Proc IEEE Global Communications Conference. Taipei: IEEE Press, 2002: 424–428.
Wübben D, Böhnke R, Kühn V, et al. Near-maximumlikelihood detection of MIMO systems using MMSE-Based lattice reduction[C]//Proc IEEE International Conference on Communications. Paris, France: IEEE Press, 2004: 798–802.
Berenguer I, Adeane J, Wassell I J, et al. Latticereduction-aided receivers for MIMO-OFDM in spatial multiplexing systems[C]//Proc IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications. Barcelona, Spain: IEEE Press, 2004: 798–802.
Windpassinger C, Fischer R F H. Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction[C]//Proc IEEE Information Theory Workshop. Paris, France: IEEE Press, 2003: 345–348.
Stierstorfer C, Fischer R F H. Lattice-reductionaided Tomlinson-Harashima precoding for point-tomultipoint transmission [J]. AEU-International J Electronics and Communications, 2006, 60(4): 328–330.
Taherzadeh M, Mobasher A, Khandani A K. LLL lattice-basis reduction achieves the maximum diversity in MIMO systems[C]//Proc IEEE International Symposium on Information Theory. Adelaide, Australia: IEEE Press, 2005: 1300–1304.
Fischer R F H, Windpassinger C. Real-vs. complexvalued equalization in V-BLAST systems [J]. IEE Electronics Letters, 2003, 39(5): 470–471.
Mow W H. Universal lattice decoding: principle and recent advances [J]. Wireless Communications and mobile computing, 2003, 3(8): 553–569.
Zheng L, Tse D N C. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels [J]. IEEE Trans Information Theory, 2003, 49(5): 1073–1096.