Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity
Tóm tắt
Susceptibility artifacts along the phase-encoding (PE) direction impact the activation pattern in the amygdala and may lead to systematic asymmetries. We implemented a triple-echo echo-planar imaging (EPI) sequence, acquiring opposite PE polarities along left–right PE direction in a single shot, to investigate its effects on amygdala lateralization. Twelve subjects viewed emotional faces to evoke amygdala activation. A region of interest analysis revealed that the lateralization of amygdala responses depended on the PE polarity thus representing a pure method artifact. Alternating PE with multi-echo EPI reduced the artifact. Lateralized fMRI activation in areas with magnetic field inhomogeneities need to be interpreted with caution.
Tài liệu tham khảo
Adolphs R (2010) What does the amygdala contribute to social cognition? Ann NY Acad Sci 1191:42–61
LaBar KS, Gitelman DR, Mesulam MM, Parrish T (2001) Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 1616:3461–3464
Chen NK, Dickey CC, Guttmann CR, Panych LP (2003) Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. Neuroimage 19:817–825
Baas D, Aleman A, Kahn R (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103
Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24:1068–1079
Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470
Mathiak K, Hertrich I, Grodd W, Ackermann H (2004) Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of non-verbal auditory memory. Neuroimage 21:154–162
Ekman P, Friesen W (1976) Pictures of facial affect. Consulting Psychologist Press, Palo Alto
Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235
Stöcker T, Kellermann T, Schneider F, Habel U, Amunts K, Pieperhoff P, Zilles K, Shah NJ (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30:151–159
Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493–504
Morawetz C, Holz P, Lange C, Baudewig J, Weniger G, Irle E, Dechent P (2008) Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 26:45–53
Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala? Neuroimage 14:253–257
Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4:437–441
Schacher M, Haemmerle B, Woermann FG, Okujava M, Huber D, Grunwald T, Krämer G, Jokeit H (2006) Amygdala fMRI lateralizes temporal lobe epilepsy. Neurology 66:81–87
Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. Neuroimage 22:203–210