Large eddy simulation of turbulence-driven secondary flow in a square duct

AIP Publishing - Tập 3 Số 11 - Trang 2734-2745 - 1991
Ravi K. Madabhushi1, S. P. Vanka1
1Department of Mechanical and Industrial Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

Tóm tắt

The fully developed turbulent flow in a straight duct of square cross section has been simulated using the large eddy simulation (LES) technique. A mixed spectral-finite difference method has been used in conjunction with the Smagorinsky eddy-viscosity model for the subgrid scales. The simulation was performed for a Reynolds number of 360 based on friction velocity (5810 based on bulk velocity) and duct width. The simulation correctly predicted the existence of secondary flows and their effects on the mean flow and turbulence statistics. The results are in good qualitative agreement with the experimental data available at much higher Reynolds numbers. It is observed that both the Reynolds normal and shear stresses equally contribute to the production of mean streamwise vorticity.

Từ khóa


Tài liệu tham khảo

1930, Ing. Arch., 1, 306, 10.1007/BF02079937

1963, J. Hydraul. Div. Am. Soc. Civil Eng., 89, 1

1964, J. Fluid Mech., 19, 375, 10.1017/S0022112064000799

1965, J. Fluid Mech., 23, 689, 10.1017/S0022112065001635

1970, J. Fluid Mech., 44, 721, 10.1017/S0022112070002112

1972, J. Fluid Mech., 54, 289, 10.1017/S0022112072000680

1973, J. Fluid Mech., 58, 1, 10.1017/S0022112073002090

1976, J. Fluid Mech., 78, 289, 10.1017/S0022112076002450

1981, J. Fluids Eng., Trans. ASME, 103, 243, 10.1115/1.3241726

1973, Proc. Inst. Mech. Eng., 187, 455, 10.1243/PIME_PROC_1973_187_131_02

1973, Proc. Inst. Mech. Eng., 187, D147

1974, Warme Stoffubertragung, 7, 151, 10.1007/BF01676486

1976, J. Fluids Eng., Trans. ASME, 98, 269, 10.1115/1.3448281

1981, J. Fluids Eng., Trans. ASME, 103, 445

1984, J. Fluid Mech., 140, 189, 10.1017/S0022112084000574

1987, J. Fluid Mech., 178, 459, 10.1017/S0022112087001319

1990, Theor. Comput. Fluid Dyn., 2, 61, 10.1007/BF00271429

1963, Mon. Weather Rev., 91, 99, 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

1982, J. Fluid Mech., 118, 341, 10.1017/S0022112082001116

1985, J. Comput. Phys., 59, 308, 10.1016/0021-9991(85)90148-2

1983, J. Comput. Phys., 52, 1, 10.1016/0021-9991(83)90013-X

1964, Num. Math., 86, 428

1968, SIAM J. Num. Anal., 5, 530, 10.1137/0705044

1977, Math. Comput., 31, 333, 10.1090/S0025-5718-1977-0431719-X

1988, Int. J. Numer. Meth. Fluids, 8, 1107, 10.1002/fld.1650080910

1987, J. Comput. Phys., 71, 343, 10.1016/0021-9991(87)90035-0

1989, J. Prop. Power, 5, 657, 10.2514/3.23203

1987, J. Fluid Mech., 177, 133, 10.1017/S0022112087000892