Màng nanotube titan dioxide đường kính lớn làm lớp tán xạ cho tế bào năng lượng mặt trời nhạy cảm với phẩm nhuộm hiệu suất cao
Tóm tắt
Từ khóa
Tài liệu tham khảo
O'Regan B, Grätzel M: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353: 737. 10.1038/353737a0
Yella A, Lee H, Tsao H, Yi C, Chandiran A, Nazeeruddin M, Diau E, Yeh C, Zakeeruddin S, Grätzel M: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334: 629–634. 10.1126/science.1209688
Miao Q, Wu L, Cui J, Huang M, Ma T: A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Adv Mater 2011, 23: 2764. 10.1002/adma.201100820
Kamat P: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 2008, 112: 18737. 10.1021/jp806791s
Lin J, Liu X, Guo M, Lu W, Zhang G, Zhou L, Chen X, Huang H: A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. Nanoscale 2012, 4: 5148–5153. 10.1039/c2nr31268a
Liu X, Lin J, Chen X: Synthesis of long TiO2 nanotube arrays with a small diameter for efficient dye-sensitized solar cells. RSC Adv 2013, 3: 4885–4889. 10.1039/c3ra40221e
Lin J, Guo M, Yip G, Lu W, Zhang G, Liu X, Zhou L, Chen X, Huang H: High temperature crystallization of free-standing anastase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells. Adv Funct Mater 2013, 23: 5952. 10.1002/adfm.201301066
Lu H, Deng K, Shi Z, Liu Q, Zhu G, Fan H, Li L: Novel ZnO microflowers on nanorod arrays: local dissolution-driven growth and enhanced light harvesting in dye-sensitized solar cells. Nanoscale Res Lett 2014, 9: 183. 10.1186/1556-276X-9-183
Yoon J, Jang S, Vittal R, Lee J, Kim K: TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells. J Photoch Photobio A 2006, 180: 184–188. 10.1016/j.jphotochem.2005.10.013
Liu Z, Su X, Hou G, Bi S, Xiao Z, Jia H: Mixed photoelectrode based on spherical TiO2 nanorod aggregates for dye-sensitized solar cells with high short-circuit photocurrent density. RSC Adv 2013, 3: 8474–8479. 10.1039/c3ra40371h
Dadgostar S, Tagabadi F, Taghavinia N: Mesoporous submicrometer TiO2 hollow spheres as scatterers in dye-sensitized solar cells. ACS Appl Mater Interfaces 2012, 4: 2964–2968. 10.1021/am300329p
Park Y, Chang Y, Kum B-G, Kong E, Son J, Kwon Y, Park T, Jang H: Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells. J Mater Chem 2011, 21: 9582. 10.1039/c1jm11043h
Hwang S, Kim C, Song H, Son S, Jang J: Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl Mater Interfaces 2012, 4: 5287–5292. 10.1021/am301245s
Raza S, Toscano G, Jauho A, Mortensen N, Wubs M: Refractive-index sensing with ultrathin plasmonic nanotubes. Plasmonics 2012, 8: 193–199.
Chen Y, Chang Y, Huang J, Chen I, Kuo C: Light scattering and enhanced photoactivities of electrospun titania nanofibers. J Phys Chem C 2012, 116: 3857–3865. 10.1021/jp2117246
Lin J, Chen J, Chen X: Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization. Electrochem Commun 2010, 12: 1062–1065. 10.1016/j.elecom.2010.05.027
Valota A, LeClere D, Schmuki P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson G: Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 2009, 54: 4321–4327. 10.1016/j.electacta.2009.02.098
Sun L, Zhang S, Sun X, He X: Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J Nanosci Nanotechnol 2010, 10: 4551–4561. 10.1166/jnn.2010.1695
Ni J, Noh K, Frandsen C, Kong S, He G, Tang T, Jin S: Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization. Mater Sci Eng C 2013, 33: 259–264. 10.1016/j.msec.2012.08.038
So S, Lee K, Schmuki P: Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. J Am Chem Soc 2012, 134: 11316–11318. 10.1021/ja301892g
Guo M, Xie K, Lin J, Yong Z, Yip C, Zhou L, Wang Y, Huang H: Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ Sci 2012, 5: 9881–9888. 10.1039/c2ee22854h
Yip CT, Huang H, Zhou L, Xie K, Wang Y, Feng T, Li J, Tam W: Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv Mater 2011, 23: 5624–5628. 10.1002/adma.201103591
Zhang Q, Myers D, Lan J, Jenekhe S, Cao G: Applications of light scattering in dye-sensitized solar cells. Phys Chem Chem Phys 2012, 14: 14982–14998. 10.1039/c2cp43089d
Huang F, Chen D, Zhang X, Caruso R, Cheng Y: Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mater 2010, 20: 1301–1305. 10.1002/adfm.200902218
Chang Y, Kong E, Park Y, Jang H: Broadband light confinement using a hierarchically structured TiO2 multi-layer for dye-sensitized solar cells. J Mater Chem A 2013, 1: 9707–9713. 10.1039/c3ta11527e