Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models

Mathematical Problems in Engineering - Tập 2012 Số 1 - 2012
Dieu Tien Bui1,2, Biswajeet Pradhan3, Owe Löfman1, Inge Revhaug1
1Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003IMT, 1432 Aas, Norway
2Faculty of Surveying and Mapping, Hanoi University of Mining and Geology, Dong Ngac, Tu Liem, Hanoi, Vietnam
3Department of Civil Engineering, Spatial and Numerical Modelling Research Group, Faculty of Engineering, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia

Tóm tắt

The objective of this study is to investigate and compare the results of three data mining approaches, the support vector machines (SVM), decision tree (DT), and Naïve Bayes (NB) models for spatial prediction of landslide hazards in the Hoa Binh province (Vietnam). First, a landslide inventory map showing the locations of 118 landslides was constructed from various sources. The landslide inventory was then randomly partitioned into 70% for training the models and 30% for the model validation. Second, ten landslide conditioning factors were selected (i.e., slope angle, slope aspect, relief amplitude, lithology, soil type, land use, distance to roads, distance to rivers, distance to faults, and rainfall). Using these factors, landslide susceptibility indexes were calculated using SVM, DT, and NB models. Finally, landslide locations that were not used in the training phase were used to validate and compare the landslide susceptibility maps. The validation results show that the models derived using SVM have the highest prediction capability. The model derived using DT has the lowest prediction capability. Compared to the logistic regression model, the prediction capability of the SVM models is slightly better. The prediction capability of the DT and NB models is lower.

Từ khóa


Tài liệu tham khảo

Sassa K., 2008, Landslides-Disaster Risk Reduction

10.1007/s11069-011-9844-2

Tien BuiD. PradhanB. LofmanO. RevhaugI. andDickO. B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS Computers & Geosciences. In press.

10.1016/j.catena.2012.04.001

10.1007/s00254-005-0019-x

10.1080/01431160701264227

10.1007/s12665‐010‐0705‐1

10.1007/s10346‐009‐0183‐2

10.1016/j.geomorph.2005.06.002

10.1016/S0169‐555X(99)00078‐1

10.1191/0309133305pp462ra

10.1007/s10064‐006‐0064‐z

10.1007/s00254‐001‐0454‐2

10.1016/j.enggeo.2004.06.001

10.1109/TGRS.2010.2050328

10.1007/s00254‐006‐0491‐y

10.1016/j.cageo.2011.04.012

10.2991/ijcis.2010.3.3.12

10.1007/s12524‐010‐0020‐z

10.1007/s10651‐010‐0147‐7

10.1016/j.cageo.2010.10.012

10.1016/j.cageo.2010.04.004

10.1002/esp.593

10.1016/S0013‐7952(03)00142‐X

10.1007/s10346‐005‐0021‐0

10.1016/j.geomorph.2004.09.025

10.1016/j.compenvurbsys.2009.12.004

10.1007/s10064‐009‐0185‐2

10.2113/gseegeosci.16.2.107

10.1007/s12665‐009‐0191‐5

10.1016/j.cageo.2008.08.007

10.1016/j.envsoft.2009.10.016

10.1016/j.enggeo.2005.02.002

10.1016/j.enggeo.2008.01.004

10.1007/s12665‐009‐0394‐9

10.1007/s12665‐009‐0426‐5

10.1016/j.asr.2010.01.006

Miner A. S., 2010, Geologically Active

10.1016/j.knosys.2009.07.008

10.1007/s10115‐007‐0114‐2

Bai S. B., 2008, GIS-Based landslide susceptibility mapping with comparisons of results from machine learning methods versus logistic regression in basin scale, Geophysical Research Abstracts, EGU, 10

Micheletti N., 2011, Landslide susceptibility mapping using adaptive Support Vector Machines and feature selection, Geophysical Research Abstracts, EGU, 13

10.1016/j.enggeo.2010.09.009

10.1016/j.geomorph.2009.02.026

10.1155/2010/901095

Ratanamahatana C. A., 2003, Feature selection for the naive Bayesian classifier using decision trees, Applied Artificial Intelligence, 17, 475, 10.1080/713827175

10.1016/j.patcog.2011.12.014

10.1016/j.knosys.2011.02.014

10.1016/j.radonc.2007.10.019

Chang C.-C., 2011, LIBSVM : a Library for Support Vector Machines, 10.1145/1961189.1961199

10.1002/esp.1064

10.5194/nhess‐11‐1475‐2011

Van T. T., 2006, Investigation and Assessment of the Current Status and Potential of Landslide in Some Sections of the Ho Chi Minh Road, National Road 1A and Proposed Remedial Measures to Prevent Landslide from Threat of Safety of People, Property, and Infrastructure

10.1007/s10064‐007‐0087‐0

Vapnik V. N., 1998, Statistical Learning Theory

10.1007/978-1-84996-098-4

10.1007/BF00994018

10.1007/s00254‐007‐1161‐4

10.1007/s11750‐010‐0152‐x

10.1371/journal.pone.0017191

10.1162/089976603321891855

LinH.-T.andLinC.-J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods 2003 National Taiwan University Taipei Taiwan.

10.1109/TKDE.2010.99

10.1016/j.neucom.2009.09.018

AliS.andSmithK. A. Automatic parameter selection for polynomial kernel Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI ′03) Octobe 2003 243–249.

Mattera D., 1999, Advances in Kernel Methods, 211

10.1023/A:1012450327387

Platt J., 2000, Probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods

10.1002/9780470140529

Zhuang L., 2006, Pricai 2006: Trends in Artificial Intelligence, Proceedings, 434, 10.1007/978-3-540-36668-3_47

10.1016/j.jfranklin.2006.09.005

10.1002/cem.873

10.1007/978-3-642-05029-9_14

10.1023/A:1009744630224

10.1016/j.envpol.2009.08.009

10.1016/j.energy.2006.11.010

10.1016/j.asr.2007.07.020

Breiman L., 1984, Classification and Regression Trees

Michael J. A., 1997, Data Mining Technique: For Marketing, Sales and Customer Support

10.1007/BF00116251

Quinlan J. R., 1993, C4.5: Programs for Machine Learning

Witten I. H., 2005, Data Mining: Practical Machine Learning Tools and Techniques

10.1023/A:1007608224229

Cho J. H., 2011, Decision tree approach for classification and dimensionality reduction of electronic nose data, Sensors and Actuators B, 160, 542, 10.1016/j.snb.2011.08.027

10.1016/j.eswa.2007.12.010

10.1023/A:1024099825458

XieZ. ZhangQ. HsuW. andLeeM. ZhouL. OoiB. andMengX. Enhancing SNNB with local accuracy estimation and ensemble techniques 3453 Proceedings of the 10th international conference on Database Systems for Advanced Applications (DASFAA ′05) April 2005 Beijing China Springer.

10.1093/bioinformatics/btq302

10.1177/001316446002000104

10.1016/S0895‐4356(99)00174‐2

10.1016/j.geomorph.2006.04.007

10.2307/2529310

10.1007/s12665‐009‐0245‐8

10.1016/j.eswa.2008.07.026

10.1023/B:NHAZ.0000007172.62651.2b

10.1007/s10346‐007‐0088‐x

10.1007/s11629‐008‐0052‐9

10.1016/j.geomorph.2005.05.011

10.5194/nhess-5-853-2005

10.1016/j.geomorph.2008.02.011

10.1016/j.enggeo.2011.09.006

10.1007/s11004-011-9379-9