Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells

Nature Communications - Tập 3 Số 1
Takamichi Miyazaki1, Sugiko Futaki2, Hirofumi Suemori1, Yukimasa Taniguchi2, Masashi Yamada2, Miwa Kawasaki2, Maria Hayashi2, Hideaki Kumagai1, Norio Nakatsuji3, Kiyotoshi Sekiguchi2, Eihachiro Kawase1
1Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
2Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
3Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu Y. et al. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem. Biophys. Res. Commun. 346, 131–139 (2006).

Akopian V. et al. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev. Biol. Anim. 46, 247–258 (2010).

Ludwig T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotech. 24, 185–187 (2006).

Chen G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429 (2011).

Tsutsui H. et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat. Commun. 2, 167 (2011).

Baker M. Stem cells in culture: defining the substrate. Nat. Methods 8, 293–297 (2011).

Thomson J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

Amit M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

Pyle A. D., Lock L. F. & Donovan P. J. Neurotrophins mediate human embryonic stem cell survival. Nature Biotech. 24, 344–350 (2006).

Draper J. S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotech. 22, 53–54 (2004).

Mitalipova M. M. et al. Preserving the genetic integrity of human embryonic stem cells. Nature Biotechnol. 23, 19–20 (2005).

Rodin S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnol. 28, 611–615 (2010).

Braam S. R. et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257–2265 (2008).

Melkoumian Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol. 28, 606–610 (2010).

Villa-Diaz L. G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotech. 28, 581–583 (2010).

Mei Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9, 768–778 (2010).

Klim J. R., Li L., Wrighton P. J., Piekarczyk M. S. & Kiessling L. L. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7, 989–994 (2010).

Saha K. et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc. Natl Acad. Sci. USA 108, 18714–18719 (2011).

Miner J. H. & Yurchenco P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20, 255–284 (2004).

Miyazaki T. et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 375, 27–32 (2008).

Ido H. et al. Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J. Biol. Chem. 279, 10946–10954 (2004).

Smirnov S. P. et al. Contributions of the LG modules and furin processing to laminin-2 functions. J. Biol. Chem. 277, 18928–18937 (2002).

Doi M. et al. Recombinant human laminin-10 (alpha5beta1gamma1). Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 277, 12741–12748 (2002).

Kortesmaa J., Yurchenco P. & Tryggvason K. Recombinant laminin-8 (alpha(4)beta(1)gamma(1)). Production, purification,and interactions with integrins. J. Biol. Chem. 275, 14853–14859 (2000).

Kariya Y. et al. Efficient expression system of human recombinant laminin-5. J. Biochem. 132, 607–612 (2002).

Vuoristo S. et al. Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J. Cell Mol. Med. 13, 2622–2633 (2009).

Nishiuchi R. et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol. 25, 189–197 (2006).

Meng Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J. 24, 1056–1065 (2010).

Ido H. et al. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins. J. Biol. Chem. 282, 11144–11154 (2007).

Taniguchi Y. et al. The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins. J. Biol. Chem. 284, 7820–7831 (2009).

Deutzmann R. et al. Cell adhesion, spreading and neurite stimulation by laminin fragment E8 depends on maintenance of secondary and tertiary structure in its rod and globular domain. Eur. J. Biochem. 191, 513–522 (1990).

Takagi J. Structural basis for ligand recognition by integrins. Curr. Opin. Cell Biol. 19, 557–564 (2007).

Watanabe K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotech. 25, 681–686 (2007).

Vachon P. H. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J. Signal Transduct. 2011, 738137 (2011).

Prowse A. B. et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 31, 8281–8288 (2010).

Lu J., Hou R., Booth C. J., Yang S. H. & Snyder M. Defined culture conditions of human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 5688–5693 (2006).

Phanstiel D. H. et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat. Methods 8, 821–827 (2011).

Andrews P. D. et al. High-content screening of feeder-free human embryonic stem cells to identify pro-survival small molecules. Biochem. J. 432, 21–33 (2010).

Xu Y. et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl Acad. Sci. USA 107, 8129–8134 (2010).

Redmer T. et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 12, 720–726 (2011).

Chen T. et al. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28, 1315–1325 (2010).

Schaller M. D. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci. 123, 1007–1013 (2010).

Li L. et al. Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys. J. 98, 2442–2451 (2010).

Sekiguchi K. & Hakomori S. Domain structure of human plasma fibronectin. Differences and similarities between human and hamster fibronectins. J. Biol. Chem. 258, 3967–3973 (1983).

Yatohgo T., Izumi M., Kashiwagi H. & Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct. Funct. 13, 281–292 (1988).

Suemori H. et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem. Biophys. Res. Commun. 345, 926–932 (2006).