Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cervero, 2009, Pain: Friend or foe? A neurobiologic perspective: The 2008 Bonica Award lecture, Reg. Anesth. Pain Med., 34, 569, 10.1097/AAP.0b013e3181b4c517
(2018, July 09). IASP Terminology: Washington, DC, USA: International Association for the Study of Pain. Available online: https://www.iasp-pain.org/terminology?%0A.
Freynhagen, 2019, Current understanding of the mixed pain concept: A brief narrative review, Curr. Med. Res. Opin., 35, 1011, 10.1080/03007995.2018.1552042
Colloca, 2017, Neuropathic Pain, Nat. Rev. Dis. Prim., 16, 749
Cavalli, E., Mammana, S., Nicoletti, F., Bramanti, P., and Mazzon, E. (2019). The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol., 33.
Fitzcharles, 2021, Nociplastic pain: Towards an understanding of prevalent pain conditions, Lancet, 397, 2098, 10.1016/S0140-6736(21)00392-5
Kosek, E., Clauw, D., Nijs, J., Baron, R., Gilron, I., Harris, R.E., Mico, J.-A., Rice, A.S.C., and Sterling, M. (2021). Chronic nociplastic pain affecting the musculoskeletal system. Pain.
Ahlbeck, 2011, Opioids: A two-faced Janus, Curr. Med. Res. Opin., 27, 439, 10.1185/03007995.2010.545379
Remesic, 2017, Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics Michael, ACS Chem. Neurosci., 8, 1147, 10.1021/acschemneuro.7b00090
Cervero, F. (2014). Undersanding Pain, The MIT Press.
Atkinson, 2020, Nonsteroidal Antiinflammatory Drugs for Acute and Chronic Pain, Phys. Med. Rehabil. Clin. N. Am., 31, 219, 10.1016/j.pmr.2020.01.002
Bindu, 2020, Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective, Biochem. Pharmacol., 180, 114, 10.1016/j.bcp.2020.114147
Finnerup, 2016, Neuropathic pain: An updated grading system for research and clinical practice, Pain, 157, 1599, 10.1097/j.pain.0000000000000492
Ghayur, M.N. (2021). Case Report Potential Adverse Consequences of Combination Therapy with Gabapentin and Pregabalin. Case Rep. Med., 2.
Goldstein, 2002, Adjuncts to opioid therapy, J. Am. Osteopath. Assoc., 102, 15
Hayashida, 2003, Novel function of bovine milk-derived lactoferrin on antinociception mediated by μ-opioid receptor in the rat spinal cord, Brain Res., 965, 239, 10.1016/S0006-8993(02)04207-5
Yamaguchi, 2009, Novel functions of bovine milk-derived α-lactalbumin: Anti-nociceptive and anti-inflammatory activity caused by inhibiting cyclooxygenase-2 and phospholipase A2, Biol. Pharm. Bull., 32, 366, 10.1248/bpb.32.366
Rosa, L., Cutone, A., Lepanto, M.S., Paesano, R., and Valenti, P. (2017). Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci., 18.
Yamauchi, 2000, 13-Week oral repeated administration toxicity study of bovine lactoferrin in rats, Food Chem. Toxicol., 38, 503, 10.1016/S0278-6915(00)00036-3
Okada, 2002, Dose-response Trial of Lactoferrin in Patients with Chronic Hepatitis C, Jpn. J. Cancer Res., 93, 1063, 10.1111/j.1349-7006.2002.tb02484.x
Giunta, 2012, Influence of lactoferrin in preventing preterm delivery: A pilot study, Mol. Med. Rep., 5, 162
Paesano, 2006, Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women, Biochem. Cell Biol., 84, 377, 10.1139/o06-040
Manzoni, 2009, Bovine Lactoferrin Supplementation for Prevention of Late-Onset Sepsis in Very Low-Birth-Weight Neonates A Randomized Trial, JAMA, 302, 1421, 10.1001/jama.2009.1403
King, 2007, A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants, J. Pediatric Gastroenterol. Nutr., 44, 245, 10.1097/01.mpg.0000243435.54958.68
Miranda, 2019, Vaginal lactoferrin in prevention of preterm birth in women with bacterial vaginosis, J. Matern.-Fetal Neonatal Med., 2019, 1
Nakano, 2019, Effect of tablets containing lactoferrin and lactoperoxidase on gingival health in adults: A randomized, double-blind, placebo-controlled clinical trial, J. Periodontal Res., 54, 702, 10.1111/jre.12679
Pammi, M., and Gautham, S. (2017). Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Data Base Syst. Rev., 6.
Du, 2021, Biological activities of commercial bovine lactoferrin sources, Biochem. Cell Biol., 99, 35, 10.1139/bcb-2020-0182
Horie, 2017, Bovine lactoferrin reduces extra-territorial facial allodynia/hyperalgesia following a trigeminal nerve injury in the rat, Brain Res., 1669, 89, 10.1016/j.brainres.2017.04.015
Lee, 2013, A current review of molecular mechanisms regarding osteoarthritis and pain, Gene, 25, 440, 10.1016/j.gene.2013.05.069
Hao, 2019, Lactoferrin: Major Physiological Functions and Applications, Curr. Protein Pept. Sci., 20, 139, 10.2174/1389203719666180514150921
Karav, S., German, J.B., Rouquié, C., Le Parc, A., and Barile, D. (2017). Studying lactoferrin N-glycosylation. Int. J. Mol. Sci., 18.
Kell, D.B., Heyden, E.L., and Pretorius, E. (2020). The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front. Immunol., 11.
Sinha, M., Kaushik, S., Kaur, P., Sharma, S., and Singh, T.P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. Int. J. Pept., 2013.
Mayeur, 2016, Lactoferrin, a Pleiotropic Protein in Health and Disease, Antioxid. Redox Signal., 24, 813, 10.1089/ars.2015.6458
Piccinini, 2010, DAMPening inflammation by modulating TLR signalling, Mediat. Inflamm., 2010, 672395, 10.1155/2010/672395
Luna, 2012, Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects, Int. Immunopharmacol., 12, 1, 10.1016/j.intimp.2011.11.002
Latorre, 2010, Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response, Toxins, 2, 54, 10.3390/toxins2010054
Takayama, 2017, Role of CXC chemokine receptor type 4 as a lactoferrin receptor 2, Biochem. Cell Biol., 95, 57, 10.1139/bcb-2016-0039
Fillebeen, 1999, Tumor necrosis factor-α increases lactoferrin transcytosis through the blood-brain barrier, J. Neurochem., 73, 2491, 10.1046/j.1471-4159.1999.0732491.x
Qiu, 2004, Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons, J. Biol. Chem., 279, 34948, 10.1074/jbc.M401055200
Guzmán-Mejía, F., Godínez-Victoria, M., Vega-Bautista, A., Pacheco-Yépez, J., and Drago-Serrano, M.E. (2021). Intestinal homeostasis under stress siege. Int. J. Mol. Sci., 22.
Bertuccini, 2014, Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn’s disease, Dig. Liver Dis., 4646, 496, 10.1016/j.dld.2014.02.009
Kawakami, 1990, Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles, Am. J. Physiol., 258, G535
Safaeian, 2014, Antioxidant Effects of Bovine Lactoferrin on Dexamethasone-Induced Hypertension in Rat, ISRN Pharmacol., 22, 1, 10.1155/2014/943523
Talukder, 2007, Bovine lactoferrin protects lipopolysaccharide-induced diarrhea modulating nitric oxide and prostaglandin E2 in mice, Can. J. Physiol. Pharmacol., 85, 200, 10.1139/Y07-004
Parlar, 2010, Effect of prolonged administration of bovine lactoferrin in neuropathic pain: Involvement of opioid receptors, nitric oxide and TNF-α, Life Sci., 86, 251, 10.1016/j.lfs.2009.12.007
El-Zayat, S.R., Sibaii, H., and Mannaa, F.A. (2019). Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent., 43.
Rasheed, 2016, Lactoferrin from Camelus dromedarius inhibits nuclear transcription Factor-kappa B activation, cyclooxygenase-2 expression and prostaglandin E2 production in stimulated human chondrocytes, Pharmacogn. Res., 8, 135, 10.4103/0974-8490.175612
Salvi, V., Vaira, X., Gianello, V., Vermi, W., Bugatti, M., Sozzani, S., and Bosisio, D. (2016). TLR Signalling Pathways Diverge in Their Ability to Induce PGE2. Mediat. Inflamm., 2016.
Hu, 2020, Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-κB/MAPK/Nrf2 pathways in IPEC-J2 cells, Food Funct., 11, 8516, 10.1039/D0FO01570A
Kong, 2020, Effects of Bovine Lactoferrin on Rat Intestinal Epithelial Cells, J. Pediatric Gastroenterol. Nutr., 70, 645, 10.1097/MPG.0000000000002636
Wisgrill, 2018, Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages, Clin. Exp. Immunol., 192, 315, 10.1111/cei.13108
Kruzel, 2002, Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice, Clin. Exp. Immunol., 130, 25, 10.1046/j.1365-2249.2002.01956.x
Zemankova, N., Chlebova, K., Matiasovic, J., Prodelalova, J., Gebauer, J., and Faldyna, M. (2016). Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages. BMC Vet. Res., 12.
Baveye, 2000, Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex, Infect. Immun., 68, 6519, 10.1128/IAI.68.12.6519-6525.2000
Almeida, 2004, Afferent pain pathways: A neuroanatomical review, Brain Res., 1000, 40, 10.1016/j.brainres.2003.10.073
Sneddon, 2018, Comparative physiology of nociception and pain, Physiology, 33, 63, 10.1152/physiol.00022.2017
Hayashida, 2003, Lactoferrin enhances opioid-mediated analgesia via nitric oxide in the rat spinal cord, Am. J. Physiol. Regul. Integr. Comp. Physiol., 285, 306, 10.1152/ajpregu.00760.2002
Hayashida, 2004, Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis, J. Vet. Med. Sci., 66, 149, 10.1292/jvms.66.149
Harada, 1999, Characteristic transfer of colostral components into cerebrospinal fluid via serum in neonatal pigs, Biol. Neonate, 76, 33, 10.1159/000014129
Hayashida, 2004, Lactoferrin enhances peripheral opioid-mediated antinociception via nitric oxide in rats, Eur. J. Pharmacol., 484, 175, 10.1016/j.ejphar.2003.11.007
Faucheux, 1995, Expression of lactoferrin receptors in increased in the mesencephalon of patients with Parkinson disease, Proc. Natl. Acad. Sci. USA, 92, 9603, 10.1073/pnas.92.21.9603
Leveugle, 1996, Cellular distribution of the iron-binding protein lactotrasferrin in the mesencephalon of Parkinson´s disease cases, Acta Neurophathol., 91, 566, 10.1007/s004010050468
Huang, 2007, Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain, J. Biomed. Sci., 14, 121, 10.1007/s11373-006-9121-7
Suzuki, 2005, Mammalian lactoferrin receptors: Structure and function, Cell. Mol. Life Sci., 62, 2560, 10.1007/s00018-005-5371-1
Bennett, 2003, Models of Neuropathic Pain in the Rat, Curr. Protoc. Neurosci., 22, 9, 10.1002/0471142301.ns0914s22
Takahashi, 2011, IL-1beta in the trigeminal subnucleus caudalis contributes to extra-territorial allodynia/hyperalgesia following a trigeminal nerve injury, Eur. J. Pain, 15, 467.e1
Sasaki, 2010, Anti-nociceptive effect of bovine milk-derived lactoferrin in a rat lumbar disc herniation model, Spine, 35, 1663, 10.1097/BRS.0b013e3181c9a8e7
Sakurai, 2009, Oxaliplatin-induced neuropathy in the rat: Involvement of oxalate in cold hyperalgesia but not mechanical allodynia, Pain, 147, 165, 10.1016/j.pain.2009.09.003
Cersosimo, 2005, Oxaliplatin-associated neuropathy: A review, Ann. Pharmacother., 39, 128, 10.1345/aph.1E319
Wang, 2008, Involvement of the nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway in the antihyperalgesic effects of bovine lactoferrin in a model of neuropathic pain, Brain Res., 1209, 1, 10.1016/j.brainres.2008.03.004
Fujimura, 2020, The pain-relieving effects of lactoferrin on oxaliplatin-induced neuropathic pain, J. Vet. Med. Sci., 82, 1648, 10.1292/jvms.20-0034
Ma, 1998, Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries, Brain Res., 797, 243, 10.1016/S0006-8993(98)00380-1
Chan, 2000, Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octamer factors in hyperalgesia, Eur. J. Pharmacol., 402, 61, 10.1016/S0014-2999(00)00431-3
Sakaue, 2001, NF-κB decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model, Neuroreport, 12, 2079, 10.1097/00001756-200107200-00008
Lee, 2004, Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity, Eur. J. Neurosci., 19, 3375, 10.1111/j.0953-816X.2004.03441.x
Haversen, 2002, Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB, Cell. Immunol., 220, 83, 10.1016/S0008-8749(03)00006-6
Inubushi, 2012, Molecular mechanisms of the inhibitory effects of bovine lactoferrin on lipopolysaccharide-mediated osteoclastogenesis, J. Biol. Chem., 287, 23527, 10.1074/jbc.M111.324673
Zong, 2015, LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways, Dev. Comp. Immunol., 52, 123, 10.1016/j.dci.2015.05.006
Cury, 2011, Pain and analgesia: The dual effect of nitric oxide in the nociceptive system, Nitric Oxide, 25, 243, 10.1016/j.niox.2011.06.004
Meller, 1993, Nitric oxide (NO) and nociceptive processing in the spinal cord, Pain, 52, 127, 10.1016/0304-3959(93)90124-8
Kusuda, R., Carreira, E.U., Ulloa, L., Cunha, F.Q., Kanashiro, A., and Cunha, T.M. (2020). Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res., 15.
Izquierdo, 2018, Antiallodynic effect induced by [6]-gingerol in neuropathic rats is mediated by activation of the serotoninergic system and the nitric oxide–cyclic guanosine monophosphate–adenosine triphosphate-sensitive K+ channel pathway, Phyther. Res., 32, 2520, 10.1002/ptr.6191
2006, Pharmacological evidence for the participation of NO-cyclic GMP-PKG-K+ channel pathway in the antiallodynic action of resveratrol, Pharmacol. Biochem. Behav., 84, 535, 10.1016/j.pbb.2006.06.019
Duarte, 1992, The molecular mechanism of central analgesia induced by morphine or carbachol and the L-arginine-nitric oxide-cGMP pathway, Eur. J. Pharmacol., 221, 171, 10.1016/0014-2999(92)90789-7
Levy, 2004, Modulation of dural nociceptor mechanosensitivity by the nitric oxide-cyclic GMP signaling cascade, J. Neurophysiol., 92, 766, 10.1152/jn.00058.2004
Mercadante, 2019, Opioid-Induced Tolerance and Hyperalgesia, CNS Drugs, 33, 943, 10.1007/s40263-019-00660-0
Hong, 1995, Peripheral opioid modulation of pain and inflammation in the formalin test, Eur. J. Pharmacol., 277, 21, 10.1016/0014-2999(95)00045-M
Mousa, 2001, β-endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue, J. Neuroimmunol., 115, 71, 10.1016/S0165-5728(01)00271-5
Wenk, 1999, Immunohistochemical localization of delta opioid receptors in peripheral tissues, J. Comp. Neurol., 408, 567, 10.1002/(SICI)1096-9861(19990614)408:4<567::AID-CNE10>3.0.CO;2-Q
Ferreira, 1991, The molecular mechanism of action of peripheral morphine analgesia: Stimulation of the cGMP system via nitric oxide release, Eur. J. Pharmacol., 201, 121, 10.1016/0014-2999(91)90333-L
Cunha, 2012, Stimulation of Peripheral Kappa Opioid Receptors Inhibits Inflammatory Hyperalgesia via Activation of the PI3Kγ/AKT/nNOS/NO Signaling Pathway, Mol. Pain, 8, 1744, 10.1186/1744-8069-8-10
Cunha, 2010, Morphine peripheral analgesia depends on activation of the PI3K /AKT/nNOS/NO/KATP signaling pathway, Proc. Natl. Acad. Sci. USA, 107, 4442, 10.1073/pnas.0914733107
Tsuchiya, 2006, Milk-derived lactoferrin may block tolerance to morphine analgesia, Brain Res., 1068, 102, 10.1016/j.brainres.2005.11.002
Li, H., Wang, Y., Yang, H., Liu, L., Wang, J., and Zheng, N. (2019). Lactoferrin Induces the Synthesis of Vitamin B6 and Protects HUVEC Functions by Activating PDXP and the PI3K/AKT/ERK1/2 Pathway. Int. J. Mol. Sci., 20.