Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease

Yi Fan1, Yi An Lin2,3, Chin Lin Huang4,5, Ching‐Sheng Hsu4, Sabrina Wang6, Shih Rung Yeh2, Yao‐Chou Tsai1
1Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
2Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
3EzInstrument Technology Co., Ltd., Hsinchu, 300, Taiwan
4Bened Biomedical Co., Ltd., Taipei, Taiwan
5Microbiome Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
6Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266. https://doi.org/10.1038/nature11466

Woodruff GN, Kelly PH, Elkhawad AO (1976) Effects of dopamine receptor stimulants on locomotor activity of rats with electrolytic or 6-hydroxydopamine-induced lesions of the nucleus accumbens. Psychopharmacologia 47:195–198. https://www.ncbi.nlm.nih.gov/pubmed/1273217

Murer MG, Moratalla R (2011) Striatal signaling in L-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front Neuroanat 5:51. https://doi.org/10.3389/fnana.2011.00051

Mugge L, Krafcik B, Pontasch G, Alnemari A, Neimat J, Gaudin D (2019) A review of biomarkers use in Parkinson with deep brain stimulation: a successful past promising a bright future. World Neurosurg 123:197–207. https://doi.org/10.1016/j.wneu.2018.11.247

Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:265–272. https://doi.org/10.1016/j.parkreldis.2006.01.004

Little S, Brown P (2014) The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat Disord 20:S44–S48. https://doi.org/10.1016/s1353-8020(13)70013-0

Holt AB, Kormann E, Gulberti A, Potter-Nerger M, McNamara CG, Cagnan H, Baaske MK, Little S, Koppen JA, Buhmann C et al (2019) Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J Neurosci 39:1119–1134. https://doi.org/10.1523/JNEUROSCI.1913-18.2018

Galvan A, Devergnas A, Wichmann T (2015) Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 9:5. https://doi.org/10.3389/fnana.2015.00005

Little S, Pogosyan A, Kuhn AA, Brown P (2012) Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 236:383–388. https://doi.org/10.1016/j.expneurol.2012.04.024

Beck MH, Haumesser JK, Kuhn J, Altschuler J, Kuhn AA, van Riesen C (2016) Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Exp Neurol 286:124–136. https://doi.org/10.1016/j.expneurol.2016.10.005

Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice – characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284:196–206. https://doi.org/10.1016/j.bbr.2015.01.053

Olsson M, Nikkhah G, Bentlage C, Bjorklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875. https://www.ncbi.nlm.nih.gov/pubmed/7751951

Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 19(16):1689. https://doi.org/10.3390/ijms19061689

Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3. https://doi.org/10.1038/s41531-016-0002-0

Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC (2016) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res 298:202–209. https://doi.org/10.1016/j.bbr.2015.10.046

Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Wang S, Tsai YC (2016) Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res 1631:1–12. https://doi.org/10.1016/j.brainres.2015.11.018

Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726. https://doi.org/10.1016/j.biopsych.2013.05.001

Huang WC, Wei CC, Huang CC, Chen WL, Huang HY (2019) The beneficial effects of Lactobacillus plantarum PS128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes. Nutrients 11(2):353. https://doi.org/10.3390/nu11020353

Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC (2020) Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.07.036

Liao PL, Wu CC, Chen TY, Tsai YC, Peng WS, Yang DJ, Kang JJ (2019) Toxicity studies of Lactobacillus plantarum PS128(TM) isolated from spontaneously fermented mustard greens. Foods 8(12):668. https://doi.org/10.3390/foods8120668

Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317. https://doi.org/10.1006/exnr.2002.7891

Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293. https://www.ncbi.nlm.nih.gov/pubmed/2528389

Chuang CF, Wu CW, Weng Y, Hu PS, Yeh SR, Chang YC (2018) High-frequency stimulation of the subthalamic nucleus activates motor cortex pyramidal tract neurons by a process involving local glutamate, GABA and dopamine receptors in hemi-Parkinsonian rats. Chin J Physiol 61:92–105. https://doi.org/10.4077/CJP.2018.BAG561

Grealish S, Mattsson B, Draxler P, Bjorklund A (2010) Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 31:2266–2278. https://doi.org/10.1111/j.1460-9568.2010.07265.x

Liao JF, Cheng YF, Li SW, Lee WT, Hsu CC, Wu CC, Jeng OJ, Wang S, Tsai YC (2019) Lactobacillus plantarum PS128 ameliorates 2,5-dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res Bull 153:59–73. https://doi.org/10.1016/j.brainresbull.2019.07.027

Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242. https://doi.org/10.3389/fneur.2014.00242

Su RJ, Zhen JL, Wang W, Zhang JL, Zheng Y, Wang XM (2018) Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-hydroxydopamine hemiparkinsonian rat model. Mol Med Rep 17:3356–3363. https://doi.org/10.3892/mmr.2017.8277

Blume SR, Cass DK, Tseng KY (2009) Stepping test in mice: a reliable approach in determining forelimb akinesia in MPTP-induced Parkinsonism. Exp Neurol 219:208–211. https://doi.org/10.1016/j.expneurol.2009.05.017

Tropea TF, Chen-Plotkin AS (2018) Unlocking the mystery of biomarkers: a brief introduction, challenges and opportunities in Parkinson Disease. Parkinsonism Relat Disord 46(Suppl 1):S15–S18. https://doi.org/10.1016/j.parkreldis.2017.07.021

Beudel M, Oswal A, Jha A, Foltynie T, Zrinzo L, Hariz M, Limousin P, Litvak V (2017) Oscillatory beta power correlates with akinesia-rigidity in the Parkinsonian subthalamic nucleus. Mov Disord 32:174–175. https://doi.org/10.1002/mds.26860

Swan CB, Schulte DJ, Brocker DT, Grill WM (2019) Beta frequency oscillations in the subthalamic nucleus are not sufficient for the development of symptoms of Parkinsonian bradykinesia/akinesia in rats. eNeuro 6. https://doi.org/10.1523/ENEURO.0089-19.2019

Dupre KB, Cruz AV, McCoy AJ, Delaville C, Gerber CM, Eyring KW, Walters JR (2016) Effects of L-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of Parkinson’s disease. Neurobiol Dis 86:1–15. https://doi.org/10.1016/j.nbd.2015.11.009

Gaetz W, Edgar JC, Wang DJ, Roberts TP (2011) Relating MEG measured motor cortical oscillations to resting gamma-aminobutyric acid (GABA) concentration. Neuroimage 55:616–621. https://doi.org/10.1016/j.neuroimage.2010.12.077

Fiber JM, Etgen AM (2001) Modulation of GABA-augmented norepinephrine release in female rat brain slices by opioids and adenosine. Neurochem Res 26:853–858. https://doi.org/10.1023/a:1011676505575

Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34. https://doi.org/10.1186/1478-811X-11-34

Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE, Kawamoto T, Iwakura Y, Betz UA, Marquez G et al (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148:447–457. https://doi.org/10.1016/j.cell.2012.01.022

Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x

Liu YW, Liong MT, Chung YE, Huang HY, Peng WS, Cheng YF, Lin YS, Wu YY, Tsai YC (2019) Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial. Nutrients 11(4):820. https://doi.org/10.3390/nu11040820