Lactiplantibacillus plantarum PS128 Alleviates Exaggerated Cortical Beta Oscillations and Motor Deficits in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266. https://doi.org/10.1038/nature11466
Woodruff GN, Kelly PH, Elkhawad AO (1976) Effects of dopamine receptor stimulants on locomotor activity of rats with electrolytic or 6-hydroxydopamine-induced lesions of the nucleus accumbens. Psychopharmacologia 47:195–198. https://www.ncbi.nlm.nih.gov/pubmed/1273217
Murer MG, Moratalla R (2011) Striatal signaling in L-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front Neuroanat 5:51. https://doi.org/10.3389/fnana.2011.00051
Mugge L, Krafcik B, Pontasch G, Alnemari A, Neimat J, Gaudin D (2019) A review of biomarkers use in Parkinson with deep brain stimulation: a successful past promising a bright future. World Neurosurg 123:197–207. https://doi.org/10.1016/j.wneu.2018.11.247
Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:265–272. https://doi.org/10.1016/j.parkreldis.2006.01.004
Little S, Brown P (2014) The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat Disord 20:S44–S48. https://doi.org/10.1016/s1353-8020(13)70013-0
Holt AB, Kormann E, Gulberti A, Potter-Nerger M, McNamara CG, Cagnan H, Baaske MK, Little S, Koppen JA, Buhmann C et al (2019) Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J Neurosci 39:1119–1134. https://doi.org/10.1523/JNEUROSCI.1913-18.2018
Galvan A, Devergnas A, Wichmann T (2015) Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 9:5. https://doi.org/10.3389/fnana.2015.00005
Little S, Pogosyan A, Kuhn AA, Brown P (2012) Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 236:383–388. https://doi.org/10.1016/j.expneurol.2012.04.024
Beck MH, Haumesser JK, Kuhn J, Altschuler J, Kuhn AA, van Riesen C (2016) Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Exp Neurol 286:124–136. https://doi.org/10.1016/j.expneurol.2016.10.005
Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice – characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284:196–206. https://doi.org/10.1016/j.bbr.2015.01.053
Olsson M, Nikkhah G, Bentlage C, Bjorklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875. https://www.ncbi.nlm.nih.gov/pubmed/7751951
Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 19(16):1689. https://doi.org/10.3390/ijms19061689
Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3. https://doi.org/10.1038/s41531-016-0002-0
Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC (2016) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res 298:202–209. https://doi.org/10.1016/j.bbr.2015.10.046
Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Wang S, Tsai YC (2016) Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res 1631:1–12. https://doi.org/10.1016/j.brainres.2015.11.018
Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726. https://doi.org/10.1016/j.biopsych.2013.05.001
Huang WC, Wei CC, Huang CC, Chen WL, Huang HY (2019) The beneficial effects of Lactobacillus plantarum PS128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes. Nutrients 11(2):353. https://doi.org/10.3390/nu11020353
Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC (2020) Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.07.036
Liao PL, Wu CC, Chen TY, Tsai YC, Peng WS, Yang DJ, Kang JJ (2019) Toxicity studies of Lactobacillus plantarum PS128(TM) isolated from spontaneously fermented mustard greens. Foods 8(12):668. https://doi.org/10.3390/foods8120668
Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317. https://doi.org/10.1006/exnr.2002.7891
Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293. https://www.ncbi.nlm.nih.gov/pubmed/2528389
Chuang CF, Wu CW, Weng Y, Hu PS, Yeh SR, Chang YC (2018) High-frequency stimulation of the subthalamic nucleus activates motor cortex pyramidal tract neurons by a process involving local glutamate, GABA and dopamine receptors in hemi-Parkinsonian rats. Chin J Physiol 61:92–105. https://doi.org/10.4077/CJP.2018.BAG561
Grealish S, Mattsson B, Draxler P, Bjorklund A (2010) Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 31:2266–2278. https://doi.org/10.1111/j.1460-9568.2010.07265.x
Liao JF, Cheng YF, Li SW, Lee WT, Hsu CC, Wu CC, Jeng OJ, Wang S, Tsai YC (2019) Lactobacillus plantarum PS128 ameliorates 2,5-dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res Bull 153:59–73. https://doi.org/10.1016/j.brainresbull.2019.07.027
Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242. https://doi.org/10.3389/fneur.2014.00242
Su RJ, Zhen JL, Wang W, Zhang JL, Zheng Y, Wang XM (2018) Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-hydroxydopamine hemiparkinsonian rat model. Mol Med Rep 17:3356–3363. https://doi.org/10.3892/mmr.2017.8277
Blume SR, Cass DK, Tseng KY (2009) Stepping test in mice: a reliable approach in determining forelimb akinesia in MPTP-induced Parkinsonism. Exp Neurol 219:208–211. https://doi.org/10.1016/j.expneurol.2009.05.017
Tropea TF, Chen-Plotkin AS (2018) Unlocking the mystery of biomarkers: a brief introduction, challenges and opportunities in Parkinson Disease. Parkinsonism Relat Disord 46(Suppl 1):S15–S18. https://doi.org/10.1016/j.parkreldis.2017.07.021
Beudel M, Oswal A, Jha A, Foltynie T, Zrinzo L, Hariz M, Limousin P, Litvak V (2017) Oscillatory beta power correlates with akinesia-rigidity in the Parkinsonian subthalamic nucleus. Mov Disord 32:174–175. https://doi.org/10.1002/mds.26860
Swan CB, Schulte DJ, Brocker DT, Grill WM (2019) Beta frequency oscillations in the subthalamic nucleus are not sufficient for the development of symptoms of Parkinsonian bradykinesia/akinesia in rats. eNeuro 6. https://doi.org/10.1523/ENEURO.0089-19.2019
Dupre KB, Cruz AV, McCoy AJ, Delaville C, Gerber CM, Eyring KW, Walters JR (2016) Effects of L-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of Parkinson’s disease. Neurobiol Dis 86:1–15. https://doi.org/10.1016/j.nbd.2015.11.009
Gaetz W, Edgar JC, Wang DJ, Roberts TP (2011) Relating MEG measured motor cortical oscillations to resting gamma-aminobutyric acid (GABA) concentration. Neuroimage 55:616–621. https://doi.org/10.1016/j.neuroimage.2010.12.077
Fiber JM, Etgen AM (2001) Modulation of GABA-augmented norepinephrine release in female rat brain slices by opioids and adenosine. Neurochem Res 26:853–858. https://doi.org/10.1023/a:1011676505575
Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34. https://doi.org/10.1186/1478-811X-11-34
Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE, Kawamoto T, Iwakura Y, Betz UA, Marquez G et al (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148:447–457. https://doi.org/10.1016/j.cell.2012.01.022
Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x