Lactate ameliorates palmitate-induced impairment of differentiative capacity in C2C12 cells through the activation of voltage-gated calcium channels
Tóm tắt
Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of skeletal muscle regeneration dysfunction. This study aimed to examine the effects and mechanisms of lactate (Lac) treatment on PA-induced impairment of C2C12 cell differentiation capacity. Furthermore, the involvement of voltage-gated calcium channels in this context was examined. In this study, Lac could improve the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG. In addition, Lac increases the inward flow of Ca2+, and promotes the depolarization of the cell membrane potential, thereby activating voltage-gated calcium channels during C2C12 cell differentiation. The enchancement of Lac on myoblast differentiative capacity was abolished after the addition of efonidipine (voltage-gated calcium channel inhibitors). Therefore, voltage-gated calcium channels play an important role in improving PA-induced skeletal muscle regeneration disorders by exercising blood Lac. Our study showed that Lac could rescue the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG through the activation of voltage-gated calcium channels.
Từ khóa
Tài liệu tham khảo
Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100. https://doi.org/10.1016/j.mito.2014.05.007
Akhmedov D, Berdeaux R (2013) The effects of obesity on skeletal muscle regeneration. Front Physiol 4:371. https://doi.org/10.3389/fphys.2013.00371
Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J (2017) Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 23(8):990–996. https://doi.org/10.1038/nm.4363
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG (2023) Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol 134(3):529–548. https://doi.org/10.1152/japplphysiol.00497.2022
Berkes CA, Bergstrom DA, Penn BH, Seaver KJ, Knoepfler PS, Tapscott SJ (2004) Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14(4):465–477. https://doi.org/10.1016/s1097-2765(04)00260-6
Berthier C, Monteil A, Lory P, Strube C (2002) Alpha(1H) mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice. J Physiol 539(Pt 3):681–691. https://doi.org/10.1113/jphysiol.2001.013246
Bidaud I, Monteil A, Nargeot J, Lory P (2006) Properties and role of voltage-dependent calcium channels during mouse skeletal muscle differentiation. J Muscle Res Cell Motil 27(1):75–81. https://doi.org/10.1007/s10974-006-9058-5
Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci USA 97(13):7627–7632. https://doi.org/10.1073/pnas.97.13.7627
Boutcher SH (2011) High-intensity intermittent exercise and fat loss. J Obes 2011:868305. https://doi.org/10.1155/2011/868305
Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27(4):757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Chen L, NiaF H, Stauber T (2021) Ion channels and transporters in muscle cell differentiation. Int J Mol Sci 22(24):13615. https://doi.org/10.3390/ijms222413615
Chen M, Li S, Hao M, Chen J, Zhao Z, Hong S, Min J, Tang J, Hu M, Hong L (2020) T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio 10(10):2122–2136. https://doi.org/10.1002/2211-5463.12965
Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M (2008) Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem 283(17):11107–11116. https://doi.org/10.1074/jbc.M708700200
Dumont NA, Rudnicki MA (2017) Characterizing satellite cells and myogenic progenitors during skeletal muscle regeneration. Methods Mol Biol (Clifton, N.J.) 1560:179–188. https://doi.org/10.1007/978-1-4939-6788-912
Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M (2016) Obesity impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes 65(1):188–200. https://doi.org/10.2337/db15-0647
Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab = Physiol Appl Nutr Metab 39(3):409–412. https://doi.org/10.1139/apnm-2013-0187
Gissel H (2005) The role of Ca2+ in muscle cell damage. Ann N Y Acad Sci 1066:166–180. https://doi.org/10.1196/annals.1363.013
Gissel H, Clausen T (2001) Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand 171(3):327–334. https://doi.org/10.1046/j.1365-201x.2001.00835.x
Granados VA, Avirneni-Vadlamudi U, Dalal P, Scarborough SR, Galindo KA, Mahajan P, Galindo RL (2019) Selective targeting of myoblast fusogenic signaling and differentiation-arrest antagonizes rhabdomyosarcoma cells. Can Res 79(18):4585–4591. https://doi.org/10.1158/0008-5472.CAN-18-2096
Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE, Sharples AP (2016) L-glutamine improves skeletal muscle cell differentiation and prevents myotube atrophy after cytokine (TNF-α) stress via reduced p38 MAPK signal transduction. J Cell Physiol 231(12):2720–2732. https://doi.org/10.1002/jcp.25380
Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364(6437):501–506. https://doi.org/10.1038/364501a0
Hindi SM, Tajrishi MM, Kumar A (2013) Signaling mechanisms in mammalian myoblast fusion. Sci Signal 6(272):re2. https://doi.org/10.1126/scisignal.2003832
Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153(2):329–338. https://doi.org/10.1083/jcb.153.2.329
Horsley V, Pavlath GK (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156(5):771–774. https://doi.org/10.1083/jcb.200111073
Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142(6):1447–1459. https://doi.org/10.1083/jcb.142.6.1447
Konig S, Béguet A, Bader CR, Bernheim L. (2006) The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development (Cambridge, England) 133(16):3107–3114. https://doi.org/10.1242/dev.02479
Liu TC, Tang XM, Duan R, Ma L, Zhu L, Zhang QG (2018) The mitochondrial Na+/Ca2+ exchanger is necessary but not sufficient for Ca2+ homeostasis and viability. Adv Exp Med Biol 1072:281–285. https://doi.org/10.1007/978-3-319-91287-5_45
Lu Y, Mao J, Han X, Zhang W, Li Y, Liu Y, Li Q (2021) Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus. Mol Cell Biochem 476(3):1351–1364. https://doi.org/10.1007/s11010-020-03995-1
Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364(6437):532–535. https://doi.org/10.1038/364532a0
Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, Tomi H, Higashida K, Iwanaka N, Hashimoto T (2015) Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (Bethesda, Md.: 1985) 118(6):742–749. https://doi.org/10.1152/japplphysiol.00054.2014
Porter GA Jr, Makuck RF, Rivkees SA (2002) Reduction in intracellular calcium levels inhibits myoblast differentiation. J Biol Chem 277(32):28942–28947. https://doi.org/10.1074/jbc.M203961200
Shainberg A, Yagil G, Yaffe D (1969) Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp Cell Res 58(1):163–167. https://doi.org/10.1016/0014-4827(69)90127-x
Sinha I, Sakthivel D, Varon DE (2017) Systemic regulators of skeletal muscle regeneration in obesity. Front Endocrinol 8:29. https://doi.org/10.3389/fendo.2017.00029
Sousa-Victor P, García-Prat L, Muñoz-Cánoves P (2022) Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 23(3):204–226. https://doi.org/10.1038/s41580-021-00421-2
Sun S, Li H, Chen J, Qian Q (2017) Lactic acid: No longer an inert and end-product of glycolysis. Physiology (Bethesda, Md.) 32(6):453–463. https://doi.org/10.1152/physiol.00016.2017
Takamori M (2012) Structure of the neuromuscular junction: function and cooperative mechanisms in the synapse. Ann N Y Acad Sci 1274:14–23. https://doi.org/10.1111/j.1749-6632.2012.06784.x
Tanabe T, Mikami A, Niidome T, Numa S, Adams BA, Beam KG (1993) Structure and function of voltage-dependent calcium channels from muscle. Ann N Y Acad Sci 707:81–86. https://doi.org/10.1111/j.1749-6632.1993.tb38044.x
Tanaka H, Shigenobu K (2002) Efonidipine hydrochloride: a dual blocker of L- and T-type Ca2+ channels. Cardiovasc Drug Rev 20(1):81–92. https://doi.org/10.1111/j.1527-3466.2002.tb00084.x
Tapscott SJ (2005) The circuitry of a master switch: myod and the regulation of skeletal muscle gene transcription. Development (Cambridge, England) 132(12):2685–2695. https://doi.org/10.1242/dev.01874
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K (2018) Lactate promotes myoblast differentiation and myotube hypertrophy via a pathway involving MyoD in vitro and enhances muscle regeneration in vivo. Int J Mol Sci 19(11):3649. https://doi.org/10.3390/ijms19113649
Tu MK, Levin JB, Hamilton AM, Borodinsky LN (2016) Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 59(2–3):91–97. https://doi.org/10.1016/j.ceca.2016.02.005
Türk Y, Theel W, Kasteleyn MJ, Franssen FME, Hiemstra PS, Rudolphus A, Taube C, Braunstahl GJ (2017) High intensity training in obesity: a meta-analysis. Obes Sci Pract 3(3):258–271. https://doi.org/10.1002/osp4.109
Willkomm L, Gehlert S, Jacko D, Schiffer T, Bloch W (2017) p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle. PLoS One 12(5):e0176609. https://doi.org/10.1371/journal.pone.0176609
Willkomm L, Schubert S, Jung R, Elsen M, Borde J, Gehlert S, Suhr F, Bloch W (2014) Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res 12(3):742–753. https://doi.org/10.1016/j.scr.2014.03.004
Yuzefovych LV, Solodushko VA, Wilson GL, Rachek LI (2012) Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells. Endocrinology 153(1):92–100. https://doi.org/10.1210/en.2011-1442