Lack of association between stavudine exposure and lipoatrophy, dysglycaemia, hyperlactataemia and hypertriglyceridaemia: a prospective cross sectional study

Springer Science and Business Media LLC - Tập 7 - Trang 1-6 - 2010
Phumla Z Sinxadi1, Jan-Stefan van der Walt1, Helen M McIlleron1, Motasim Badri2, Peter J Smith1, Joel A Dave3, Naomi S Levitt3, Gary Maartens1
1Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
2Department of Medicine, Clinical Research Support Unit, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
3Department of Medicine, Division of Diabetic Medicine and Endocrinology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa

Tóm tắt

Stavudine continues to be widely used in resource poor settings despite its toxicity. Our objective was to determine association between plasma stavudine concentrations and lipoatrophy, concentrations of glucose, lactate and triglycerides. Participants were enrolled in a cross-sectional study with lipoatrophy assessment, oral glucose tolerance test, fasting triglycerides, finger prick lactate, and stavudine concentrations. Individual predictions of the area under the concentration curve (AUC) were obtained using a population pharmacokinetic approach. Logistic regression models were fitted to assess the association between stavudine geometric mean ratio > 1 and impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, hypertriglyceridaemia, and lipoatrophy. There were 47 study participants with a median age of 34 years and 83% were women. The median body mass index and waist:hip ratio was 24.5 kg/m2 and 0.85 respectively. The median duration on stavudine treatment was 14.5 months. The prevalence of lipoatrophy, impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, and hypertriglyceridaemia were 34%, 19%, 4%, 32%, and 23% respectively. Estimated median (interquartile range) stavudine AUC was 2191 (1957 to 2712) ng*h/mL. Twenty two participants had stavudine geometric mean ratio >1. Univariate logistic regression analysis showed no association between stavudine geometric mean ratio >1 and impaired fasting glucose (odds ratio (OR) 2.00, 95% CI 0.44 to 9.19), impaired glucose tolerance (OR 1.14, 95% CI 0.07 to 19.42), hyperlactataemia (OR 2.19, 95%CI 0.63 to 7.66), hypertriglyceridaemia (OR 1.75, 95%CI 0.44 to 7.04), and lipoatrophy (OR 0.83, 95% CI 0.25 to 2.79). There was a high prevalence of metabolic complications of stavudine, but these were not associated with plasma stavudine concentrations. Until there is universal access to safer antiretroviral drugs, there is a need for further studies examining the pathogenesis of stavudine-associated toxicities.

Tài liệu tham khảo

WHO: Addendum to the 2006 WHO guidelines on antiretroviral therapy for HIV infection in adults and adolescents. (date last accessed 28 September 2008)http://www.who.int/hiv/art/ARTadultsaddendum.pdf Boulle A, Orrell C, Kaplan R, van Cutsem G, McNally M, Hilderbrand K: Substitution due to antiretroviral toxicity or contraindication in the first 3 years of antiretroviral treatment in a large South African cohort. Antivir Ther. 2007, 12: 753-60. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C: Incidence and risk factors for new onset diabetes in HIV-infected patients. The data collection on adverse events of anti-HIV drugs (D: A: D) study. Diabetes Care. 2008, 31: 1224-1229. 10.2337/dc07-2013 World Health Organization: Antiretroviral therapy for HIV infection in adults and adolescents in resource-limited settings: towards universal access. 2006, Geneva: World Health Organization, Hill A, Ruxrungtham K, Hanvanich M, Katlama C, Wolf E, Soriano V: Systematic review of clinical trials evaluating low doses of stavudine as part of antiretroviral treatment. Expert Opin Pharmacother. 2007, 8: 679-688. 10.1517/14656566.8.5.679 Kakuda TN: Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor -induced mitochondrial toxicity. Clinical therapeutics. 2000, 22: 685-708. 10.1016/S0149-2918(00)90004-3 Velsor L, Kovacevic M, Goldstein M, Leitner HM, Lewis W, Day BJ: Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine. Toxicology and Applied pharmacology. 2004, 199: 10-19. 10.1016/j.taap.2004.03.005 Aarnoutse RE, Schapiro JM, Boucher CA, Hekster YA, Burger DM: Therapeutic Drug Monitoring. An Aid to Optimising Response to Antiretroviral Drugs?. Drugs. 2003, 63: 741-53. 10.2165/00003495-200363080-00002 ter Hofstede HJM, Koopmans PP, Burger DM: Stavudine plasma concentrations and lipoatrophy. Journal of Antimicrobial Chemotherapy. 2008, 61: 933-938. 10.1093/jac/dkn041 American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes care. 2008, 31: S55-S60. 10.2337/dc08-S055 Grundy SM, Cleeman JI, Merz CN, Brewer HB, Clark LT, Hunninghake DB: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004, 110 (2): 227-239. 10.1161/01.CIR.0000133317.49796.0E Carr A, Law M: HIV lipodystrophy case definition study. JAIDS. 2003, 33: 571-576. ACTG adherence follow-up questionnaire. on the 22 December 2006, http://www.caps.ucsf.edu/tools/surveys/pdf/2098.4188.pdf Van der Walt JS, Cohen K, McIlleron HM, Smith PJ, Maartens G, Karlsson MO: Effect of rifampicin-based antitubercular therapy and cotrimoxazole on the population pharmacokinetics of stavudine (d4T) in HIV-1 infected patients. PAGE. 2009, 18: Abstr 1495, http://www.page-meeting.org/?abstract=1495 McComsey GA, Lo Re V, O'Riordan M, Walker UA, Lebrecht D, Baron E: Effect of reducing the dose of stavudine on body composition bone density and markers of mitochondrial toxicity in HIV subjects- a randomised controlled study. Clin Infect Dis. 2008, 46: 1290-1296. 10.1086/529384 Ait-Mohand H, Bonmarchand M, Guiguet M, Slama L, Marguet F, Behin A: Viral efficacy maintained and safety parameters improved with a reduced dose of stavudine. HIV Medicine. 2008, 9: 738-746. 10.1111/j.1468-1293.2008.00616.x Anderson PL, Kakuda TN, Lichtenstein KA: The cellular pharmacology of nucleoside- and nucleotide- analogue reverse-transcriptase inhibitors and its relation ship to clinical toxicities. Clin Infect Dis. 2004, 38: 743-753. 10.1086/381678 Fletcher CV, Kawle SP, Kakuda TN, Anderson PL, Weller D, Bushman LR: Zidovudine and lamivudine triphosphate concentration-response relationships in HIV-infected persons. AIDS. 2000, 14: 2137-2144. 10.1097/00002030-200009290-00010 Fletcher CV, Anderson PL, Kakuda TN, Schacker TW, Henry C, Gross C, Brundage RC: Concentration-controlled compared with conventional antiretroviral therapy for HIV infection. AIDS. 2002, 16: 551-560. 10.1097/00002030-200203080-00006 Hoggard PG, Lloyd J, Khoo S, Barry MG, Dann L, Gibbons SE: Zidovudine phosphorylation determined sequentially over 12 months in Human Immunodeficiency Virus-infected patients with or without previous exposure to antiretroviral agents. Antimicrobial Agents and Chemotherapy. 2001, 45: 976-980. 10.1128/AAC.35.3.976-980.2001 Moyle G, Boffito M, Fletcher C, Higgs C, Hay PE, Song IH: Steady state pharmacokinetics of abacavir in plasma and intracellular carbovir triphoshate following administration of abacavir at 600 mg milligrams once daily and 300 mg twice daily in Human Immunodeficiency Virus-infected subjects. Antimicrobial Agents and Chemotherapy. 2009, 53: 1532-1538. 10.1128/AAC.01000-08 Domingo P, Cabeza MC, Pruvost A, Salazar J, del Mar Guiterrez M, Mateo MG: Relationship between HIV/Highly Active Antiretroviral Therapy (HAART)-Associated Lipodystrophy Syndrome and stavudine-triphosphate intracellular levels in patients with stavudine-based antiretroviral regimens. Clinical Infectious Diseases. 2010, 50: DOI: 10.1086/651117 Canter JA, Haas DW, Kallianpur AR, Ritchie MD, Robbins GK, Shafer W: The mitochondrial pharmacogenomics of haplogroup T: MTND2 24*LHON4917G and antiretroviral therapy-associated peripheral neuropathy. The Pharmacogenomics Journal. 2008, 8: 71-77. 10.1038/sj.tpj.6500470 Canter JA, Robbins GK, Selph D, Clifford DB, Kallianpur AR, Shafer R, : Mitochondrial Subhaplogroups and Peripheral Neuropathy during Antiretroviral Therapy (ART) among Non-Hispanic Black Participants in AIDS Clinical Trials Group (ACTG) Study 384. CROI. 2009, Abstract # 160, Montreal, Ontario, Canada, Hulgan T, Tebas P, Canter JA, Mulligan K, Haas DW, Dubé M, Grinspoon S: Hemochromatosis gene polymorphisms mitochondrial haplogroups and peripheral lipoatrophy during antiretroviral therapy. JID. 2008, 197: 858-66. 10.1086/528697 Hulgan T, Haubrich R, Riddler S, Tebas P, Ritchie MD, McComsey GA: Mitochondrial DNA Haplogroups and Metabolic Changes during Antiretroviral Therapy (ART) in AIDS Clinical Trials Group (ACTG) Study A5142. Antiviral Therapy. 2009, 14 (Suppl 2): A17- Schaad H, Petty BG, Grasela DM, Christofalo B, Raymond R, Stewart M: Pharmacokinetics and safety of a single dose of stavudine (d4T) in patients with severe hepatic impairment. Antimicrobial Agents and Chemotherapy. 1997, 41: 2793-2796. Kumar AKH, Ramachandran G, Rajasekaran S, Padmapriyadarsini C, Nandrenan G, Subramanyam SAS: Pharmacokinetics of lamivudine & stavudine in generic fixed- dose combinations in HIV-1 infected adults in India. Indian J Med Res. 2009, 130: 451-457. Zerit® (stavudine). http://packageinserts.bms.com/pi/pi_zerit.pdf van Grievesen J, De Naeyer L, Mushi T, Ubarijoro S, Gashumba D, Gazille C, Zachariah R: High prevalence of lipoatrophy among patients on stavudine-containing first-line antiretroviral therapy regimens in Rwanda. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2007, 101: 793-798. 10.1016/j.trstmh.2007.02.020 The study of Fat Redistribution And Metabolic change in HIV infection(FRAM): Fat distribution in women with HIV infection. J Acquir Immune Defic Syndr. 2006, 42: 562-571. 10.1097/01.qai.0000229996.75116.da Podzamczer D, Ferrer E, Sanchez P, Gatell JM, Crespo M, Fisac C: Less lipoatrophy and better lipid profile with abacavir as compared to stavudine. 96 week results of a randomized study. J Acquir Immune Def Syndrome. 2007, 44: 139-147. 10.1097/QAI.0b013e31802bf122. Haubrich RH, Riddler SA, DiRienzo AG, Komarow L, Powderly WG, Klingman K, AIDS Clinical Trials Group (ACTG) A5142: Metabolic outcomes in a randomised trial of nucleoside nonnucleoside and protease inhibitor sparing regimens for initial HIV treatment. AIDS. 2009, 23: 1108-1118. 10.1097/QAD.0b013e32832b4377. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA: Diagnosis, prediction and natural course of HIV-1 protease-inhibitor associated lipodystrophy hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999, 353: 2093-2099. 10.1016/S0140-6736(98)08468-2 Calza L, Manfredi R, Chiodo F: Hyperlactaemia and lactic acidosis in HIV patients receiving antiretroviral therapy. Clinical Nutrition. 2005, 24: 5-15. 10.1016/j.clnu.2004.03.009 Patroni A, Torti C, Tomasoni L, Roldan EQ, Bertelli D, Puoti M, MASTER study group: Effect of Highly Active Antiretroviral Therapy (HAART) and hepatitis C co-infection on hyperlipidaemia in HIV infected patients: A retrospective longitudinal study. HIV Clin Trials. 2002, 3: 451-461. 10.1310/W024-QC4T-NXU0-TKYT Domingos H, da Cunha , Paniago AMM, Martins DM, Elkhoury EB, de Souza AS: Metabolic effects to the Highly Active Antiretroviral Therapy (HAART) in AIDS patients. The Brazilian Journal of Infectious Diseases. 2009, 13: 130-136.