L p-Theory of elliptic differential operators on manifolds of bounded geometry

Acta Applicandae Mathematicae - Tập 23 - Trang 223-260 - 1991
Yu. A. Kordyukov1
1Ufa Aviation Institute, Ufa, Bashkir, U.S.S.R.

Tóm tắt

This paper is devoted to some of the properties of uniformly elliptic differential operators with bounded coefficients on manifolds of bounded geometry in L pspaces. We prove the coincidence of minimal and maximal extensions of an operator of a considered type with a positive principal symbol, the existence of holomorphic semigroup, generated by it, and the estimates of L p-norms of the operators of this semigroup. Some spectral properties of such operators in L pspaces are also studied.

Tài liệu tham khảo

Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119–147. Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampére Equations, Springer, Berlin, 1982. Berger, M., Gauduchon, P., and Mazet, E.: Le spectre d'une variété Riemanniene. Lecture Notes in Math. 194 Springer, New York, 1971. Bishop, R. L. and Crittenden, R. J.: Geometry of Manifolds, Academic Press, New York, 1964. Browder, F. E.: On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1960/61), 22–130. Cheeger, J., Gromov, M., and Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds. J. Diff. Geom. 17 (1982), 15–54. Davies, E. B.: One-Parameter Semigroups, Academic Press, London, 1980. Davies, E. B.: L 1-properties of second-order elliptic operators, Bull. London Math. Soc. 17 (1985), 417–436. Donnelly, H.: Asymptotic expansions for the compact quotients of properly discontinuous group actions. Illinois J. Math. 23 (1979), 485–496. Eidelman, S. D.: Parabolic Systems, Nauka, Moscow, 1964 (in Russian). Friedman, A.: Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Greiner, P.: An asymptotic expansions for the heat kernel, Archiv Rational Mech. Anal. 41 (1979), 163–218. Hempel, R. and Voigt, J.: The spectrum of a Schrödinger operator in L p(Rv) is p-independent, Comm. Math. Phys. 104 (1986), 243–250. Kobayashi, T., Ono, K., and Sunada, T.: Periodic Schrödinger operators on a manifold, Forum Math. 1 (1989), 69–79. Kordyukov, Yu. A.: L p-theory of elliptic differential operators with bounded coefficients, Vestnik Moskov. Univ. Ser. I, Mat. Mech. No. 4 (1988), pp. 98–100 (in Russian). Lohoue, N.: Estimations des projecteurs de de Rham-Hodge de certaines variétés Riemanniennes non-compactes, Preprint, 1984. Masuda, K.: Manuscript at Kyoto seminar, 1970. Meladze, G. A. and Shubin, M. A.: Properly supported uniform pseudodifferential operators on unimodular Lie groups, Trudy Sem. Petrovsk. 11 (1986), 74–97 (in Russian). Meladze, G. A. and Shubin, M. A.: Functional calculus of pseudo-differential operators on unimodular Lie groups, Trudy Sem. Petrovsk. 12 (1978), 164–200 (in Russian). Reed, M. and Simon, B.: Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1964. Roe, J.: An index theorem on open manifolds I, J. Diff. Geom. 27 (1988), 87–113. Shubin, M. A.: Almost periodic functions and partial differential operators. Uspekhi Mat. Nauk 33(2) (1978), 3–47 (in Russian); English transl.: Russian Math. Surveys 33 (1978). Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Nauka, Moscow, 1978 (in Russian); English transl.: Springer-Verlag, New York, 1987. Stewart, H. B.: Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141–162. Stewart, H. B.: Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 299–310. Strichartz, R. S.: Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48–79. Strichartz, R. S.: L p-contractive projections and the heat semigroup for differential forms, J. Funct. Anal. 65 (1985), 348–357. Treves, F., Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1: Pseudodifferential Operators, Plenum Press, New York, 1980. Varopoulos, N. Th.: Hardy-Littlewood theory for semigroups; J. Funct. Anal. 63 (1985), 240–260. Yosida, K.: Functional Analysis, Springer, Berlin, 1968. Shubin, M. A.: Weak Bloch property and weight estimates for elliptic operators, Séminaire Equations aux Dérivees Partielles, Ecole Polytechnique, Centre de mathématiques, 1989–1990.